首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BAHD acyltransferases catalyze the acylation of many plant secondary metabolites. We characterized the function of At2g19070 , a member of the BAHD gene family of Arabidopsis thaliana . The acyltransferase gene was shown to be specifically expressed in anther tapetum cells in the early stages of flower development. The impact of gene repression was studied in RNAi plants and in a knockout (KO) mutant line. Immunoblotting with a specific antiserum raised against the recombinant protein was used to evaluate the accumulation of At2g19070 gene product in flowers of various Arabidopsis genotypes including the KO and RNAi lines, the male sterile mutant ms1 and transformants overexpressing the acyltransferase gene. Metabolic profiling of flower bud tissues from these genetic backgrounds demonstrated a positive correlation between the accumulation of acyltransferase protein and the quantities of metabolites that were putatively identified by tandem mass spectrometry as N 1, N 5, N 10-trihydroxyferuloyl spermidine and N 1, N 5-dihydroxyferuloyl- N 10-sinapoyl spermidine. These products, deposited in pollen coat, can be readily extracted by pollen wash and were shown to be responsible for pollen autofluorescence. The activity of the recombinant enzyme produced in bacteria was assayed with various hydroxycinnamoyl-CoA esters and polyamines as donor and acceptor substrates, respectively. Feruloyl-CoA and spermidine proved the best substrates, and the enzyme has therefore been named spermidine hydroxycinnamoyl transferase (SHT). A methyltransferase gene ( At1g67990 ) which co-regulated with SHT during flower development, was shown to be involved in the O -methylation of spermidine conjugates by analyzing the consequences of its repression in RNAi plants and by characterizing the methylation activity of the recombinant enzyme.  相似文献   

2.
Li N  Zhang DS  Liu HS  Yin CS  Li XX  Liang WQ  Yuan Z  Xu B  Chu HW  Wang J  Wen TQ  Huang H  Luo D  Ma H  Zhang DB 《The Plant cell》2006,18(11):2999-3014
In flowering plants, tapetum degeneration is proposed to be triggered by a programmed cell death (PCD) process during late stages of pollen development; the PCD is thought to provide cellular contents supporting pollen wall formation and to allow the subsequent pollen release. However, the molecular basis regulating tapetum PCD in plants remains poorly understood. We report the isolation and characterization of a rice (Oryza sativa) male sterile mutant tapetum degeneration retardation (tdr), which exhibits degeneration retardation of the tapetum and middle layer as well as collapse of microspores. The TDR gene is preferentially expressed in the tapetum and encodes a putative basic helix-loop-helix protein, which is likely localized to the nucleus. More importantly, two genes, Os CP1 and Os c6, encoding a Cys protease and a protease inhibitor, respectively, were shown to be the likely direct targets of TDR through chromatin immunoprecipitation analyses and the electrophoretic mobility shift assay. These results indicate that TDR is a key component of the molecular network regulating rice tapetum development and degeneration.  相似文献   

3.
In nature, the same biochemical reaction can be catalyzed by enzymes having fundamentally different folds, reaction mechanisms and origins. For example, the third step of the reductive catabolism of pyrimidines, the conversion of N-carbamyl-β-alanine to β-alanine, is catalyzed by two β-alanine synthase (βASase, EC 3.5.1.6) subfamilies. We show that the “prototype” eukaryote βASases, such as those from Drosophila melanogaster and Arabidopsis thaliana, are relatively efficient in the conversion of N-carbamyl-βA compared with a representative of fungal βASases, the yeast Saccharomyces kluyveri βASase, which has a high Km value (71 mM). S. kluyveri βASase is specifically inhibited by dipeptides and tripeptides, and the apparent Ki value of glycyl-glycine is in the same range as the substrate Km. We show that this inhibitor binds to the enzyme active center in a similar way as the substrate. The observed structural similarities and inhibition behavior, as well as the phylogenetic relationship, suggest that the ancestor of the fungal βASase was a protease that had modified its profession and become involved in the metabolism of nucleic acid precursors.  相似文献   

4.
Vacuolar processing enzyme (VPE) is a Cys proteinase responsible for the maturation of vacuolar proteins. Arabidopsis thaliana deltaVPE, which was recently found in the database, was specifically and transiently expressed in two cell layers of the seed coat (ii2 and ii3) at an early stage of seed development. At this stage, cell death accompanying cell shrinkage occurs in the ii2 layer followed by cell death in the ii3 layer. In a deltaVPE-deficient mutant, cell death of the two layers of the seed coat was delayed. Immunocytochemical analysis localized deltaVPE to electron-dense structures inside and outside the walls of seed coat cells that undergo cell death. Interestingly, deltaVPE in the precipitate fraction from young siliques exhibits caspase-1-like activity, which has been detected in various types of plant cell death. Our results suggest that, at the early stage of seed development, deltaVPE is involved in cell death of limited cell layers, the purpose of which is to form a seed coat.  相似文献   

5.
Caspases are considered to be the key effector proteases of apoptosis. Initiator caspases cleave and activate downstream executioner caspases, which are responsible for the degradation of numerous cellular substrates. We studied the role of caspases in apoptotic cell death of a human melanoma cell line. Surprisingly, the pancaspase inhibitor zVAD-fmk was unable to block cleavage of poly(ADP-ribose) polymerase (PARP) after treatment with etoposide, while it did prevent DEVDase activity. It is highly unlikely that caspase-2, which is a relatively zVAD-fmk-resistant caspase, is mediating etoposide-induced PARP cleavage, as a preferred inhibitor of this caspase could not prevent cleavage. In contrast, caspase activation and PARP degradation were blocked by pretreatment of the cells with the serine protease inhibitor 4-(2-aminoethyl)benzenesulfonyl fluoride (AEBSF). We therefore conclude that a serine protease regulates an alternative initiation mechanism that leads to caspase activation and PARP cleavage. More importantly, while zVAD-fmk could not rescue melanoma cells from etoposide-induced death, the combination with AEBSF resulted in substantial protection. This indicates that this novel pathway fulfills a critical role in the execution of etoposide-induced programmed cell death.  相似文献   

6.
7.
Rice LIM protein OsPLIM2a is involved in rice seed and tiller development   总被引:1,自引:0,他引:1  
Yield of major monocotyledonous crops including wheat, rice, barley, and sorghum is greatly influenced by tillering. However, deciphering the underlying mechanisms of the tillering has long been hindered because many changeable factors are involved in the process. Plant two LIM-domain-containing proteins bind to and stabilize actin filaments that are major constituents in the formation of higher-order actin cytoskeleton. Here, we report that rice LIM-domain protein, OsPLIM2a, is involved in rice tillering likely through actin cytoskeleton organization. OsPLIM2 genes (OsPLIM2a, OsPLIM2b, and OsPLIM2c) expressed in reproductive organs including anthers, but not in other tissues. Analysis of both OsPLIM2a and OsPLIM2c promoter fused to GUS reporter revealed that both promoters directed strong and specific GUS expression in pollens. Transient expression of OsPLIM2a-GFP and OsPLIM2c-GFP in tobacco leaves showed that OsPLIM2a and OsPLIM2c could bind to actin filaments, which is consistent with other plant LIM proteins with actin-binding property. To examine further physiological roles of rice OsPLIM2a and OsPLIM2c, transgenic rice plants with 35S:OsPLIM2a or 35S:OsPLIM2c were examined for any phenotypic changes. Transgenic plants overexpressing OsPLIM2a produced bigger seeds than wild type, whereas they exhibited reduction in tiller numbers. These results suggest that OsPLIM2a may participate positively in seed development but negatively in tiller differentiation. Protein interaction assays using OsPLIM2c proteins revealed that OsPLIM2c interacted with at least three proteins including rice Fimbrin, of which homologs in Arabidopsis play crucial roles in pollen tube growth, implying that rice OsPLIM2c and Fimbrin may exert roles together in pollen tube growth.  相似文献   

8.
9.
SEPTIN9 (SEPT9) is a filament-forming protein involved in numerous cellular processes. We have used a conditional knock out allele of Sept9 to specifically delete Sept9 in T-cells. As shown by fluorescence-activated cell sorting, loss of Sept9 at an early thymocyte stage in the thymus results in increased numbers of double-negative cells indicating that SEPT9 is involved in the transition from the double-negative stage during T-cell development. Accordingly, the relative numbers of mature T-cells in the periphery are decreased in mice with a T-cell-specific deletion of Sept9. Proliferation of Sept9-deleted CD8+ T-cells from the spleen is decreased upon stimulation in culture. The altered T-cell homeostasis caused by the loss of Sept9 results in an increase of CD8+ central memory T-cells.  相似文献   

10.
A genetic pathway for tapetum development and function in Arabidopsis   总被引:1,自引:0,他引:1  
Zhu J  Lou Y  Xu X  Yang ZN 《植物学报(英文版)》2011,53(11):892-900
  相似文献   

11.
  • Mitochondrial function is critical for cell vitality in all eukaryotes including plants. Although plant mitochondria contain many proteins, few have been studied in the context of plant development and physiology.
  • We used knock‐down mutant RPS9M to study its important role in male gametogenesis and seed development in Arabidopsis thaliana.
  • Knock‐down of RPS9M in the rps9m‐3 mutant led to abnormal pollen development and impaired pollen tube growth. In addition, both embryo and endosperm development were affected. Phenotype analysis revealed that the rps9m‐3 mutant contained a lower amount of endosperm and nuclear proteins, and both embryo cell division and embryo pattern were affected, resulting in an abnormal and defective embryo. Lowering the level of RPS9M in rps9m‐3 affects mitochondrial ribosome biogenesis, energy metabolism and production of ROS.
  • Our data revealed that RPS9M plays important roles in normal gametophyte development and seed formation, possibly by sustaining mitochondrial function.
  相似文献   

12.
Kallikrein-related peptidase-8 (KLK8) is a relatively uncharacterized epidermal protease. Although proposed to regulate skin-barrier desquamation and recovery, the catalytic activity of KLK8 was never demonstrated in human epidermis, and its regulators and targets remain unknown. Herein, we elucidated for the first time KLK8 activity in human non-palmoplantar stratum corneum and sweat ex vivo. The majority of stratum corneum and sweat KLK8 was catalytically active, displaying optimal activity at pH 8.5 and considerable activity at pH 5. We also showed that KLK8 is a keratinocyte-specific protease, not secreted by human melanocytes or dermal fibroblasts. KLK8 secretion increased significantly upon calcium induction of terminal keratinocyte differentiation, suggesting an active role for this protease in upper epidermis. Potential activators, regulators, and targets of KLK8 activity were identified by in vitro kinetic assays using pro-KLK8 and mature KLK8 recombinant proteins produced in Pichia pastoris. Mature KLK8 activity was enhanced by calcium and magnesium ions and attenuated by zinc ions and by autocleavage after Arg(164). Upon screening KLK8 cleavage of a library of FRET-quenched peptides, trypsin-like specificity was observed with the highest preference for (R/K)(S/T)(A/V) at P1-P1'-P2'. We also demonstrated that KLK5 and lysyl endopeptidase activate latent pro-KLK8, whereas active KLK8 targets pro-KLK11, pro-KLK1, and LL-37 antimicrobial peptide activation in vitro. Together, our data identify KLK8 as a new active serine protease in human stratum corneum and sweat, and we propose regulators and targets that augment its involvement in a skin barrier proteolytic cascade. The implications of KLK8 elevation and hyperactivity in desquamatory and inflammatory skin disease conditions remain to be studied.  相似文献   

13.
14.
15.
Journal of Industrial Microbiology & Biotechnology - CylA is a subtilisin-like protein belonging to a recently expanded serine protease family related to class II lanthipeptide biosynthesis. As...  相似文献   

16.
Shan L  Li C  Chen F  Zhao S  Xia G 《Plant, cell & environment》2008,31(8):1128-1137
A salt-responsive gene WRSI5 was characterized from salt-tolerant cultivar Shanrong No. 3 (SR3), an introgression line via asymmetric somatic hybrid between Triticum aestivum L. cv. Jinan177 (JN177) and Thinopyrum ponticum Podp. The peptide encoded by WRSI5 contains a Bowman-Birk domain sharing a high level of sequence identity to monocotyledonous protease inhibitors. When expressed in vitro , the WRSI5 gene product exhibited trypsin, but not chymotrypsin inhibition. The expression level of WRSI5 was increased in SR3 roots exposed to salt, drought or oxidative stress. In situ hybridization showed that it is induced in the endodermal cells of the mature region of the SR3 root tip, with no signal detectable in the corresponding region of the salt-susceptible cultivar JN177. SR3 has a higher selectivity for K+ over Na+, and therefore limits the transport of Na+ from the root to the shoot. When overexpressed in Arabidopsis thaliana , WRSI5 improves the ability of seedlings to grow on a medium containing 150 m m NaCl. We suggest that WRSI5 plays an important role in regulating the plant growth rate or long-distance Na+ transport in SR3 plants exposed to salt stress.  相似文献   

17.
Autotransporters (ATs) constitute an important family of virulence factors secreted by Gram-negative bacteria. Following their translocation across the inner membrane (IM), ATs temporarily reside in the periplasmic space after which they are secreted into the extracellular environment. Previous studies have shown that the AT hemoglobin protease (Hbp) of Escherichia coli requires a functional signal recognition particle pathway and Sec translocon for optimal targeting to and translocation across the IM. Here, we analyzed the mode of IM translocation of Hbp in more detail. Using site-directed photocross-linking, we found that the Hbp signal peptide is adjacent to YidC early during biogenesis. Notably, YidC is in part associated with the Sec translocon but has until now primarily been implicated in the biogenesis of IM proteins. In vivo, YidC appeared critical for the biogenesis of the ATs Hbp and EspC. For Hbp, depletion of YidC resulted in the formation of secretion-incompetent intermediates that were sensitive to degradation by the periplasmic protease DegP, indicating that YidC activity affects Hbp biogenesis at a late stage, after translocation across the IM. This is the first demonstration of a role for YidC in the biogenesis of an extracellular protein. We propose that YidC is required for maintenance of the translocation-competent state of certain ATs in the periplasm. The large periplasmic domain of YidC is not critical for this novel functionality as it can be deleted without affecting Hbp biogenesis.  相似文献   

18.
19.
The mRNA expression of the Solanum chacoense Ovule Receptor Kinase 17 (ScORK17), a receptor kinase of the LRR-VI subfamily, is highly specific to the female reproductive tissues. No LRR-VI subfamily members in any plant species have yet been attributed a function. A phylogenetic tree inferred using the kinase domain of LRR-VI subfamily members separated the family into two clades: one containing an average of 8.2 LRR per protein and a second clade containing an average of 2.7. In situ hybridization analyses showed that the ScORK17 signal was mainly detected in the single ovule integument and in the endothelium. Transient expression analysis also revealed that ScORK17 was N-glycosylated in planta. Overexpression of ScORK17 in S. chacoense did not produce plants with an altered phenotype. However, when heterologous transformation was performed with a full-length ScORK17 clone in A. thaliana, the resulting transgenic plants showed reduced seed set, mainly due to aberrant embryo sac development, thus supporting a developmental role for ScORK17 in ovule and seed development.  相似文献   

20.
Diabetes represents a major endemic disease throughout the world, and different therapeutic methods are used to treat the disease. Xenotransplantation of pig islet cells is a potential treatment for type 1 diabetes, but studies of protein expression in distinct islet cells are rare. ZnT8, a member of the slc30A gene family, is involved in islet endocrine hormone release and is a diabetes auto-antigen, raising the question of whether ZnT8 expression is regulated similarly in pig and human pancreas. We used nested RT-PCR to detect ZnT8 expression in pig pancreas and polyclonal antibody to examine possible co-localization with other islet hormones. Immunohistochemistry of sequential serial sections as well as double immunostaining of pancreatic tissues with antibodies against ZnT8, insulin, glucagon, and somatostatin shows that pig ZnT8 is exclusively co-expressed in insulin-producing, but not in glucagon- or somatostatin-producing cells. The absence of ZnT8 in glucagon-producing cells in pig islets indicates that zinc homeostasis is mediated by a different cellular mechanism compared with human islet cells. Our findings provide important information about the cell-type-specific expression of ZnT8 in porcine islet cells, which should be taken into account when evaluating different xenotransplantation approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号