首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytochrome oxidase activity from the retina can be enhanced or depressed by free radical-mediated reactions both in positive and negative aspect. The greatest effect was exerted by ischemia/reperfusion, which significantly increased the fluorescent products of lipid peroxidation (358 %, P < 0.01) and inhibited the enzyme activity (14%, P < 0.001). After hyperoxia the fluorescent products slightly increased (192%, P < 0.05) as well as the enzyme activity (133 %, P < 0.05). Hypoxia had no effect on any of these parameters. Specific changes in the composition of fluorophores after ischemia/reperfusion were revealed in the fluorescence spectra. The fact that increased lipid peroxidation after hyperoxia and after ischemia/reperfusion does not produce the same effect upon cytochrome oxidase activity might be explained by changes in the kinetic behavior of cytochrome oxidase. In the control enzyme preparation, two binding sites for cytochrome c were observed. One was of the low-affinity (Km = 60 microM) and the other of the high-affinity (Km = 1.12 microM). After in vitro-initiated lipid peroxidation, the low-affinity binding site was lost and the activity measured under "optimum" conditions at a single cytochrome concentration was higher than in the controls. This implies that oxidative damage to cytochrome oxidase in vivo can be site-specific and its extent should be estimated by performing detailed kinetic analysis as otherwise the results might be misleading.  相似文献   

2.
The effects of the lipid-peroxidation product 4-hydroxynonenal on the formation of fluorescent chromolipids from microsomes, mitochondria and phospholipids were studied. Incubation of freshly prepared rat liver microsomes or mitochondria with 4-hydroxynonenal results in a slow formation of a fluorophore with an excitation maximum at 360 nm and an emission maximum at 430 nm. The rate and extent of the development of the 430 nm fluorescence can be significantly enhanced by ADP-iron (Fe3+). With microsomes, yet not with mitochondria. NADPH has a catalytic effect similar to that of ADP-iron. Fluorescent chromolipids with maximum excitation and emission at 360/430 nm are also formed during the NADPH-linked ADP-iron-stimulated lipid peroxidation. Phosphatidylethanolamine and phosphatidylserine react with 4-hydroxynonenal revealing a fluorophore with the same spectral characteristics as that obtained in the microsomal and mitochondrial system. The findings suggest that the fluorescent chromolipids formed by lipid peroxidation are not derived from malonaldehyde, but are formed from 4-hydroxynonenal or similar reactive aldehydes via a NADPH and/or ADP-iron-catalysed reaction with phosphatidylethanolamine and phosphatidylserine contained in the membrane.  相似文献   

3.
We used a new method, polarization sensing, to monitor the concentration of the fluorophore rhodamine 800 in an intralipid suspension and in chicken tissue. Rhodamine 800 (Rh800) could be excited at 648 nm using a laser pointer. We developed a simple device for measuring the combined emission from a highly polarized reference film and the unpolarized or orthogonally polarized emission of Rh800 from the scattering intralipid or tissue. The concentration of Rh800 in this medium was revealed by large changes in the polarization (P) with values of P ranging from 0.8 to -0.9. It is possible to vary the sensitive Rh800 concentration range by variation of the detected emission wavelengths, orientation of the excitation polarizer, or fluorophore concentration in the reference film. Polarization sensing of fluorophores in tissue requires only steady-state detection, and can be accomplished with simple and/or portable electronics. Such devices may find use in electronic detection of ingested medicines based on transdermal detection of nontoxic long-wavelength fluorophores.  相似文献   

4.
Rabbit spinal cord, subjected to severe partial ischemia induced by abdominal aorta ligation tightly below the renal arteries, was analyzed for phospholipid composition and levels of lipid peroxidation products after 10, 20, and 40 min of the insult. Under conditions when spinal cord blood flow was decreased below 5% of control, concentrations of inositol and ethanolamine phospholipids were decreased by 30% and 10%, respectively. Phosphatidic acid concentration was also altered during ischemia. No accumulation of thiobarbituric acid reactive substances (TBA-RS), conjugated dienes and fluorescent lipid soluble material was found throughout the ischemic period. Pattern of TBA-RS, conjugated diene, and fluorophore formation during postischemic in vitro incubation without and with a peroxidation couple (Fe2+, ascorbic acid) showed increased susceptibility to postischemic lipid peroxidation in tissues after 20 and 40 min of ischemia.  相似文献   

5.
A method for in vivo evaluation of lipid peroxidation in the extracellular space of anaesthetized rat brain cortex was developed. This method involved the use of microdialysis perfusion and high-performance liquid chromatography. The microdialysates, eluted from implanted probes, were reacted with thiobarbituric acid (TBA) prior to analysis by an HPLC system equipped with a fluorescence detector (excitation and emission wavelengths were 515 and 550 nm, respectively). Lipid peroxidation in the extracellular space was evaluated as the concentration of malondialdehyde, a lipid peroxidation end product which reacts with TBA to form a fluorescent conjugate. Significantly increased production of malondialdehyde following hydrogen peroxide perfusion (0.03%, 0.3% at a flow-rate of 1 μl/min) was observed in the brain cortex of anaesthetized rats.  相似文献   

6.
Mitochondrial oxidative damage contributes to a wide range of pathologies, and lipid peroxidation of the mitochondrial inner membrane is a major component of this disruption. However, despite its importance, there are no methods to assess mitochondrial lipid peroxidation within cells specifically. To address this unmet need we have developed a ratiometric, fluorescent, mitochondria-targeted lipid peroxidation probe, MitoPerOx. This compound is derived from the C11-BODIPY(581/591) probe, which contains a boron dipyromethane difluoride (BODIPY) fluorophore conjugated via a dienyl link to a phenyl group. In response to lipid peroxidation the fluorescence emission maximum shifts from ~590 to ~520nm. To target this probe to the matrix-facing surface of the mitochondrial inner membrane we attached a triphenylphosphonium lipophilic cation, which leads to its selective uptake into mitochondria in cells, driven by the mitochondrial membrane potential. Here we report on the development and characterization of MitoPerOx. We found that MitoPerOx was taken up very rapidly into mitochondria within cells, where it responded to changes in mitochondrial lipid peroxidation that could be measured by fluorimetry, confocal microscopy, and epifluorescence live cell imaging. Importantly, the peroxidation-sensitive change in fluorescence at 520nm relative to that at 590nm enabled the use of the probe as a ratiometric fluorescent probe, greatly facilitating assessment of mitochondrial lipid peroxidation in cells.  相似文献   

7.
The fluorescence characteristics of product (I), formed during the lipid peroxidation of rat liver phosphatidylcholine liposomes containing glycine, and fluorescent product (II), derived from the reaction of malonaldehyde with glycine, were examined to elucidate the mechanism of fluorescent chromophore formation. Fluorescent product (I) had a fluorescence emission maximum at 430 nm when excited at 360 nm; its fluorescence intensity decreases in alkaline medium, but is restored by readjustment of pH to neutrality. In contrast, fluorescent product (II) exhibited an emission maximum at 458 nm, and the fluorescence was quenched at acidic pH. The fluorescent substances formed during the lipid peroxidation of hemoglobin-free human erythrocyte ghost membranes had similar fluorescence characteristics to product (I). Gel filtration experiments showed that molecular size of fluorescent product (I) was larger than that of fluorescent product (II). The thiobarbituric acid-reactive substances released from peroxidizing liposomal phospholipids had a larger molecular size than malonaldehyde, and produced little or no fluorescence with glycine. It is concluded that the precursor of the fluorescent product formed during the lipid peroxidation of membrane phospholipids differs from malonaldehyde. The mechanism of the formation of blue emitting fluorescent material, believed to be a component of lipofuscin, seems to involve peroxidized phospholipids of the membrane.  相似文献   

8.
A biosensor model was developed for a commercial NADH fluorescence probe to describe the single-frequency excitation and emission fluorescence behavior of an aqueous mixture of fluorophores. This model is essential in correlating the measured signals to the concentrations of fluorescent compounds in a bioreactor. In addition to the concentrations of fluorescent components, the relevant parameters of the model are the absorbance at both the excitation and the emission frequencies by the solvent and other absorbing species, the background signals, the light path length of the bioreactor vessel, the fluorescence yield, and the lampdetector configuration. Due to inner-filter effects and other interferences, the probe signal is intrinsically nonlinear in both the fluorophore concentration and the path length. An important parameter in the model is the geometric constant, S, which accounts for variations in the monitoring efficiency throughout the sample because fluorescent light is emitted in all directions. Previous models, derived from an unrealistic assumption that fluorescent light is emitted only in one direction parallel to the probe axis, are shown to be seriously deficient. The validity of the model was verified experimentally for a single-component solution in which both the fluorophore concentration and path length were varied.  相似文献   

9.
We describe a localization microscopy analysis method that is able to extract results in live cells using standard fluorescent proteins and xenon arc lamp illumination. Our Bayesian analysis of the blinking and bleaching (3B analysis) method models the entire dataset simultaneously as being generated by a number of fluorophores that may or may not be emitting light at any given time. The resulting technique allows many overlapping fluorophores in each frame and unifies the analysis of the localization from blinking and bleaching events. By modeling the entire dataset, we were able to use each reappearance of a fluorophore to improve the localization accuracy. The high performance of this technique allowed us to reveal the nanoscale dynamics of podosome formation and dissociation throughout an entire cell with a resolution of 50 nm on a 4-s timescale.  相似文献   

10.
目的 阴极荧光(CL)成像是一种以电子束为激发源的高分辨荧光成像技术,但生物材料对电子束的敏感性限制了CL技术在生命科学中的广泛应用。为了研究和发展CL技术在生物样品中的应用,本文旨在通过探究电子辐照引起碳基材料的结构损伤、有机基团的降解及荧光猝灭等问题,深入理解电子源对有机荧光团的激发特性。方法 本研究应用扫描电镜(SEM)和阴极荧光谱仪系统(SEM-CL),研究电子源对有机荧光团及荧光探针标记细胞的激发特性,观测了有机物的CL信号的发射特性、强度衰减、成像方式及特点。结果 实验结果显示,在低能量(2.5~5 keV)和低束流(~10 pA)电子辐照下,有机荧光微珠发射出较强的荧光,CL像分辨率达到~30 nm。荧光微珠经过12 min辐照,信号强度衰减了25%,CL像仍保持了可接受的发光强度和足够的信噪比。此外,还获得了从细胞表面到内部一定深度内,荧光标记的亚细胞结构信息。结论 在SEM-CL系统中,可以同时获得由电子束激发产生的电子像和CL像,实现阴极荧光与电子显微镜关联(CCLEM)成像。本实验的研究结果为CCLEM技术应用于生物结构研究提供了数据及技术支持。  相似文献   

11.
Elofsson  R.  Falck  B.  Lindvall  O.  Myhrberg  H. 《Cell and tissue research》1977,182(4):525-536
Summary In certain sensory neurons of many different invertebrate species, including the sea anemones. Metridium senile and Tealia felina and the crustacean Anemia salina, fluorophores are formed during the course of the fluorescent histochemical technique of Falck-Hillarp. The presumed catecholamine nature of the neuronal fluorogenic compound was investigated by microspectrofluorometry, and the spectral characteristics of the fluorescence in the taxonomically different species was found to be very similar (excitation maximum at 375 nm with a smaller peak or shoulder at 330 nm and sometimes a shoulder in the spectrum at 410 nm; emission maximum at 475 nm). The emission maximum coincides with that of the catecholamines and DOPA (475 nm). The excitation maximum (375 nm) directly after formaldehyde treatment, however, differs from that of the catecholamines and DOPA (410 nm), but is similar to the excitation maximum displayed by these catechol derivatives at acid pH. The spectral characteristics of the fluorophore in the sensory cells might therefore theoretically be explained by an acid pH in the cells. This seems improbable, however, and it is suggested that the phenomenon is due to the presence of unknown catechol derivatives. Analyses of the pH-dependent spectral changes indicate that the presumed catechol derivative in Tealia felina is -hydroxylated, whereas that in Anemia salina is not.  相似文献   

12.
Increased generation of reactive oxygen species results in the formation of fluorescent end-products of lipid peroxidation - lipofuscin-like pigments (LFP). LFP increased up to six-fold from the fetal value in the rat heart immediately after birth. In the experimental design of this study the fetuses were sampled 1 day before birth, and then the samples were collected on postnatal days 1, 4, 7, 10, 15, 30, and 60. Males and females were compared on day 30 and 60 when the difference between right and left ventricle was studied as well. Four LFP fluorophores were analyzed: F355/440, F310/470, F350/450, F315/450 (excitation/emission, nm). All fluorophores decreased on day 4 relative to day 1, subsequent transient increases ended in a significant decrease on day 60. However, the LFP levels on day 60 are still about threefold higher than those in fetuses. Differences between male and female hearts were observed on day 30. The corresponding male ventricles contained by one third higher concentration of LFP than the female counterparts. The increase in LFP concentration in male ventricles on day 30 was only transient, no difference between corresponding male and female ventricles was found on day 60. The most distinguished feature in the male heart was a sharp LFP decrease in the right ventricle on day 60.  相似文献   

13.
The fluorescent molecules of cellular age pigment granules (lipofuscin) are commonly thought to be end products of membrane lipid autoxidation. Lipofuscin fluorophores of the retinal pigment epithelium (RPE) appear to be derived from photoreceptor outer segment membranes. Experiments were therefore conducted to determine whether the in vitro oxidation of retinal homogenates would generate fluorophores similar to the naturally occurring lipofuscin fluorophores of the RPE. Neural retina and RPE-choroid homogenates from young (2-3 month old) albino rats were subjected to an iron-ascorbate-air pro-oxidant reaction medium, and compared to unoxidized control samples from young age-matched animals as well as senescent (24 month old) rats. In addition, neural retina and RPE-choroid homogenates from 3 month old albino rats were subjected to a 100% oxygen atmosphere to test whether the fluorescent products of autoxidation differ substantially from those generated in the pro-oxidant medium. The chloroform-soluble fluorophores of chloroform-methanol sample extracts were analyzed by corrected fluorescence spectroscopy and thin-layer chromatography (TLC). In vitro pro-oxidation of both the neural retina and the RPE from young rats produced blue-emitting fluorophores which differed from the orange- and yellow-emitting fluorophores extracted from the RPE of senescent rats. Corrected fluorescence spectroscopy of aged tissue extracts revealed vitamin A-related fluorescence (330 nm excitation maximum; 515 nm emission maximum) and a spectrally resolvable age-related fluorescence (420 nm excitation maximum; 600 nm emission maximum). Only the vitamin A-related fluorescence could be measured in the control of young samples.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Human articular cartilages of various ages were digested with collagenase, and the fluorescence of the digests was measured as a function of age. At acidic pH, all collagenase-treated fractions were found to contain two main fluorophores with fluorescence maxima at 395 and 385 nm (excitation at 295 and 335 nm, respectively). Each fluorophore was isolated from the hydrolysate and its structure was deduced from spectral and chemical data. The 395/295 nm fluorophore was identified as pyridinoline, which is one of the non-reducible cross-linkages in collagen. The 385/335 nm fluorophore was identical to pentosidine, which was isolated from human dura mater and characterized by Sell and Monnier in 1989. Our results showed that the amount of pentosidine per collagen in human articular cartilage increases linearly with age (r = 0.929, p less than 0.005), while the amount of pyridinoline per collagen remained constant and was not correlated with age (r = 0.20). On the other hand, the amount of pentosidine per pyridinoline increased exponentially during life (r2 = 0.839, p less than 0.05).  相似文献   

15.
We describe a new approach to fluorescence sensing based on measurements of steady-state anisotropies in the presence of reference fluorophores with known anisotropies. The basic concept is that the anisotropy of a mixture reflects a weighted average of the anisotropies of the emitting species. By use of reference fluorophores the starting anisotropy can be near zero, or near 0.9 for oriented films which contain the reference fluorophore. Changing intensities of the analyte result in changes in anisotropy. A wide dynamic range of anisotropies is available because of the freedom to select high or low starting values. Anisotropy-based sensing was demonstrated for pH using 6-carboxyfluorescein and for protein affinity or immunoassay using an oriented film with high anisotropy and a protein labeled with a metal-ligand complex. The latter measurements were performed with a simple light-emitting diode excitation source without an excitation polarizer. The sensitive range of the assay can be adjusted by changing the intensity of the reference fluorophore. Anisotropy-based sensing can have numerous applications in clinical and analytical chemistry.  相似文献   

16.
T Iio  K Yoden 《Life sciences》1987,40(24):2297-2302
Secondary oxidative products of autoxidized methyl linoleate were divided into three groups (SP-I, SP-II and SP-III), which were then compared as to their abilities to form fluorescent substances and to degrade heme. SP-III showed a marked ability to produce two fluorescent substances exhibiting an excitation maximum at 350-360 nm and an emission maximum at 410-430 nm, while SP-I showed a more strongly degradative effect on heme than SP-III. The heme degradation was observed in parallel with the changes of TBA value in an early stage of lipid peroxidation and the fluorescence formation markedly increased according to the decrease of TBA value in a later stage. The results suggested that there are different reactive substances which bring about fluorescence formation and heme degradation and that they are produced at different stages of lipid peroxidation.  相似文献   

17.
Commercial chemiluminescent reagents emit across a broad portion of the electromagnetic spectrum (400–500 nm). A challenge to the use of chemiluminescence to monitor biological processes is the presence of interfering substances in the biological optical window. In the present study, longer wavelength emitting fluorophores (the organic dyes Alexa 568 and Alexa 647), and a semiconductor nanoparticle (QDOT800) were used to red‐shift the emission from commercially available 1,2‐dioxetane‐based chemiluminescent substrate reactions. By adding non‐conjugated fluorescent emitters into chemiluminescent reaction mixtures, an emission peak occurred at the predicted wavelength of the fluorescent emitter. The excitation and emission from QDOT800 was preserved in the presence of a 100 µm‐thick glass barrier separating it from the chemiluminescent reaction components. The maximum tissue phantom penetration by QDOT800 emission was 8.5 mm; in comparison, the native chemiluminescent emission at 500 nm was unable to penetrate the thinnest tissue phantom of 2.5 mm. The described method for red‐shifted emissions from chemiluminescent reactions does not require direct interaction between the chemiluminescent reaction and the fluorescent emitters. This suggests that the mechanism of chemiluminescent excitation of fluorophores and QDOT800 is not exclusive to chemiluminescence resonance energy transfer or sensitized chemiluminescence, but rather by broad energization from the native chemiluminescent emission. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Folding and chromophore cyclization-oxidation processes of green and cyan fluorescent fusion proteins (GFP and CFP) in subcellular microenvironments of transfected C6 glioma cells were studied by multipixel spectrally resolved microscopy (SRM). Discrete time-dependent spectral transitions were characterized during protein folding and chromophore maturation in the cytosol, nucleus, mitochondria, endoplasmic reticulum (ER), and Golgi. Spectral similarity mapping of fluorophore transition phases demarcated spatio-temporal fluorescence correlation at a subcellular level. Folding stages were characterized by a transition from red-shifted spectral populations in the time interval of 7-10 hr after transfection to a fully matured fluorophore emitting typical GFP or CFP fluorescence after 10-15 hr. The nascent protein revealed an initial focal accumulation in cytosol emitting in the range of 580-680 nm. After 10 hr, mixed pixel population spectra were measured and at 15 hr GFP was visualized in the cytoplasm by its specific spectral fingerprints with maxima at 545 nm. For nucleus- and mitochondrion-targeted CFPs, the mature conformer was discovered only in its final destination, whereas intermediate steps of fluorophore synthesis (at 10 hr) were found in the cytoplasm. Enhanced fluorescence maturation was manifested only by the ER-Golgi-targeted CFP after 10 hr post transfection by spectral imaging. Moreover, only remnants of initial intermediate fluorescent pixels were localized externally to the Golgi framework at 15 hr. SRM assessed the competence of ER-Golgi to maintain efficient CFP folding in comparison to the rest of the cellular compartments.  相似文献   

19.
The excitation of a fluorescent molecule by a beta-decay electron (radioluminescence) depends upon the electron energy, the distance between radioactive 'donor' and fluorescent 'acceptor', and the excitation characteristics and solvent environment of the fluorophore. The theory for calculation of single photon radioluminescence (SPR) signals is developed here; in the accompanying paper, measurement methods and biological applications are presented. To calculate the three-dimensional spatial profile for electron energy deposition in an aqueous environment, a Monte Carlo calculation was performed incorporating theories of electron energy distributions, energy loss due to interactions with matter, and deflections in electron motion due to collisions. For low energy beta emitters, 50% of energy deposition occurs within 0.63 micron (3H, 18.5 keV), 22 microns (14C, 156 keV), 25 microns (35S, 167 keV), and 260 microns (36Cl, 712 keV) of the radioisotope. In close proximity to the beta emitter (100 nm, 3H; 10 microns, 14C) the probability for fluorophore excitation is approximately proportional to the inverse square of the distance between the beta emitter and fluorophore. To investigate the other factors that determine the probability for fluorophore excitation, SPR measurements were carried out in solutions containing 3H and a series of fluorophores in different solvents. In water, the probability of fluorescence excitation was nearly proportional to the integrated absorbance over a > 1,000-fold variation in absorbances. The probability of fluorescence excitation was enhanced up to 2,600-fold when the fluorophore was in a "scintillant" aromatic or hydrocarbon solvent. SPR emission spectra were similar to fluorescence emission spectra obtained with photon excitation. The single photon signal due to Bremsstrahlung increased with wavelength in agreement with theory. The distance dependence for the SPR signal predicted by the model was in good agreement with measurements in which a 14C donor was separated by known thicknesses of water from a fluorescently-coated coverglass. Quantitative predictions for radioluminescence signal as a function of donor-acceptor distance were developed for specific radioisotope-fluorophore geometries in biological samples.  相似文献   

20.
Synopsis The influence of concentration of dopamine and noradrenaline on the spectral characteristics of their formaldehyde-induced fluorophore, together with the influence of duration of reaction with formaldehyde, has been investigated in a model system. No substantial differences between fluorescence spectra of the amine fluorophores were observed. Accordingly, the influence of hydrochloric acid and ammonia vapours on the fluorophores was investigated. A shift to shorter wavelengths in the excitation maximum of each fluorophore was observed after a brief exposure to hydrochloric acid vapour; more prolonged exposure resulted in a pronounced shift back to longer wavelengths in the case of noradrenaline but no substantial change was observed with dopamine. Brief exposure to hydrochloric acid vapour resulted in a substantial increase in the rate of fading of the noradrenaline fluorophore on exposure to exciting radiation. It is suggested that this offers a convenient way of differentiating the amines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号