共查询到20条相似文献,搜索用时 0 毫秒
1.
Richard G. Hansford 《Journal of bioenergetics and biomembranes》1994,26(5):495-508
A model has been proposed in which mitochondrial Ca2+ ion transport serves to regulate mitochondrial matrix free Ca2+ ([Ca2+]m), with the advantage to the animal that this allows the regulation of pyruvate dehydrogenase and the tricarboxylate cycle in response to energy demand. This article examines recent evidence for dehydrogenase activation and for increases in [Ca2+]m in response to increased tissue energy demands, especially in cardiac myocytes and in heart. It critiques recent results on beat-to-beat variation in [Ca2+]m in cardiac muscle and also briefly surveys the impact of mitochondrial Ca2– transport on transient changes in cytosolic free Ca2+ in excitable tissues. Finally, it proposes that a failure to elevate [Ca2+]m sufficiently in response to work load may underlie some cardiomyopathies of metabolic origin. 相似文献
2.
The mechanisms and regulation of mitochondrial Ca2+ transport 总被引:4,自引:0,他引:4
3.
The effects of the polyamine spermine on the regulation of Ca2+ transport by subcellular organelles from rat liver, heart, and brain were investigated using ion-sensitive minielectrodes and a 45Ca2+ tracer method. Spermine stimulated Ca2+ uptake by mitochondria but not by microsomes. In the presence of spermine, isolated mitochondria could maintain a free extramitochondrial Ca2+ concentration of 0.3-0.2 microM. Stimulation of the initial rates of Ca2+ uptake and 45Ca2+ cycling of mitochondria by spermine shows that this was accomplished through a decrease of the apparent Km for Ca2+ uptake by the Ca2+ uniporter. The half maximally effective concentration of spermine (50 microM) was in the range of physiological concentrations of this polyamine in the cell. Spermidine was five times less effective. Putrescine was ineffective. The stimulation of mitochondrial Ca2+ uptake by spermine was inhibited by Mg2+ in a concentration-dependent manner. However, the diminished contribution of the mitochondria to the regulation of the free extraorganellar Ca2+ concentration could mostly be compensated for by microsomal Ca2+ uptake. Spermine also reversed ruthenium red-induced Ca2+ efflux from mitochondria. It is concluded that spermine is an activator of the mitochondrial Ca2+ uniporter and Mg2+ an antagonist. By this mechanism, the polyamines can confer to the mitochondria an important role in the regulation of the free cytoplasmic Ca2+ concentration in the cell and of the free Ca2+ concentration in the mitochondrial matrix. 相似文献
4.
Shigaki T Cheng NH Pittman JK Hirschi K 《The Journal of biological chemistry》2001,276(46):43152-43159
Ca(2+) levels in plants, fungi, and bacteria are controlled in part by H(+)/Ca(2+) exchangers; however, the relationship between primary sequence and biological activity of these transporters has not been reported. The Arabidopsis H(+)/cation exchangers, CAX1 and CAX2, were identified by their ability to suppress yeast mutants defective in vacuolar Ca(2+) transport. CAX1 has a much higher capacity for Ca(2+) transport than CAX2. An Arabidopsis thaliana homolog of CAX1, CAX3, is 77% identical (93% similar) and, when expressed in yeast, localized to the vacuole but did not suppress yeast mutants defective in vacuolar Ca(2+) transport. Chimeric constructs and site-directed mutagenesis showed that CAX3 could suppress yeast vacuolar Ca(2+) transport mutants if a nine-amino acid region of CAX1 was inserted into CAX3 (CAX3-9). Biochemical analysis in yeast showed CAX3-9 had 36% of the H(+)/Ca(2+) exchange activity as compared with CAX1; however, CAX3-9 and CAX1 appear to differ in their transport of other ions. Exchanging the nine-amino acid region of CAX1 into CAX2 doubled yeast vacuolar Ca(2+) transport but did not appear to alter the transport of other ions. This nine-amino acid region is highly variable among the plant CAX-like transporters. These findings suggest that this region is involved in CAX-mediated Ca(2+) specificity. 相似文献
5.
The role of mitochondrial Ca2+ transport and matrix Ca2+ in signal transduction in mammalian tissues
The pyruvate, NAD(+)-isocitrate and 2-oxoglutarate dehydrogenases are key regulatory enzymes in intramitochondrial oxidative metabolism in mammalian tissues, and can all be activated by increases in Ca2+ in the micromolar range. There is now mounting evidence that hormones and other stimuli which act by increasing cytosolic Ca2+ also, as a result, cause increases in mitochondrial matrix Ca2+ and hence activation of these enzymes, suggesting that the primary physiological function of mitochondrial Ca2(+)-transport is to be involved in this relay mechanism. This may also explain how in such circumstances rates of ATP production may be increased to meet the greater demand, but without any decreases in ATP/ADP occurring. 相似文献
6.
The effect of silymarin on different functions of mitochondria isolated from rat kidneys was studied. Addition of silymarin to mitochondria oxidizing succinate, induced stimulation of the respiratory State 4; while in mitochondria oxidizing NAD-dependent substrates, the drug produced inhibition of the oxygen consumption. It is also shown that silymarin induces mitochondrial swelling, a drop in the transmembrane potential, as well as Ca2+ release. It is proposed that due to its hydrophobic character, silymarin produces an alteration in the lipidic milieu of the inner membrane which is conductive to an inhibition of the electron transport in the NAD-CoQ span of the respiratory chain, as well as to the loss of the energy dependent accumulated Ca2+. 相似文献
7.
8.
Effects of spermine on mitochondrial Ca2+ transport and the ranges of extramitochondrial Ca2+ to which the matrix Ca2+-sensitive dehydrogenases respond.
下载免费PDF全文

J G McCormack 《The Biochemical journal》1989,264(1):167-174
1. Spermine has previously been reported to be an activator of mitochondrial Ca2+ uptake [Nicchitta & Williamson (1984) J. Biol. Chem. 259, 12978-12983]. This is confirmed in the present studies on rat heart, liver and kidney mitochondria by using the activities of the Ca2+-sensitive intramitochondrial dehydrogenases (pyruvate, NAD+-isocitrate and 2-oxoglutarate dehydrogenases) as probes for matrix Ca2+, and also, for the heart mitochondria, by using entrapped fura-2. 2. As also found previously [Damuni, Humphreys & Reed (1984) Biochem. Biophys. Res. Commun. 124, 95-99], spermine activated extracted pyruvate dehydrogenase phosphate phosphatase. However, it was found to have no effects at all on the extracted NAD+-isocitrate or 2-oxoglutarate dehydrogenases. It also had no effects on activities of the enzymes in mitochondria incubated in the absence of Ca2+, or on the Ca2+-sensitivity of the enzymes in uncoupled mitochondria. 3. Spermine clearly activated 45Ca uptake by coupled mitochondria, but had no effect on Ca2+ egress from mitochondria previously loaded with 45Ca. 4. Spermine (with effective Km values of around 0.2-0.4 mM) caused an approx. 2-3-fold decrease in the effective ranges of extramitochondrial Ca2+ in the activation of the Ca2+-sensitive matrix enzymes in coupled mitochondria from all of the tissues. The effects of spermine appeared to be largely independent of the other effectors of mitochondrial Ca2+ transport, such as Mg2+ (inhibitor of uptake) and Na+ (promoter of egrees). 5. In the most physiological circumstance, coupled mitochondria incubated with Na+ and Mg2+, the presence of saturating spermine (2 mM) resulted in an effective extramitochondrial Ca2+ range for matrix enzyme activation of from about 30-50 nM up to about 800-1200 nM, with half-maximal effects around 250-400 nM-Ca2+. The implications of these findings for the regulation of matrix and extramitochondrial Ca2+ are discussed. 相似文献
9.
Christoph A. Blomeyer Jason N. Bazil David F. Stowe Ranjan K. Pradhan Ranjan K. Dash Amadou K. S. Camara 《Journal of bioenergetics and biomembranes》2013,45(3):189-202
In cardiac mitochondria, matrix free Ca2+ ([Ca2+]m) is primarily regulated by Ca2+ uptake and release via the Ca2+ uniporter (CU) and Na+/Ca2+ exchanger (NCE) as well as by Ca2+ buffering. Although experimental and computational studies on the CU and NCE dynamics exist, it is not well understood how matrix Ca2+ buffering affects these dynamics under various Ca2+ uptake and release conditions, and whether this influences the stoichiometry of the NCE. To elucidate the role of matrix Ca2+ buffering on the uptake and release of Ca2+, we monitored Ca2+ dynamics in isolated mitochondria by measuring both the extra-matrix free [Ca2+] ([Ca2+]e) and [Ca2+]m. A detailed protocol was developed and freshly isolated mitochondria from guinea pig hearts were exposed to five different [CaCl2] followed by ruthenium red and six different [NaCl]. By using the fluorescent probe indo-1, [Ca2+]e and [Ca2+]m were spectrofluorometrically quantified, and the stoichiometry of the NCE was determined. In addition, we measured NADH, membrane potential, matrix volume and matrix pH to monitor Ca2+-induced changes in mitochondrial bioenergetics. Our [Ca2+]e and [Ca2+]m measurements demonstrate that Ca2+ uptake and release do not show reciprocal Ca2+ dynamics in the extra-matrix and matrix compartments. This salient finding is likely caused by a dynamic Ca2+ buffering system in the matrix compartment. The Na+- induced Ca2+ release demonstrates an electrogenic exchange via the NCE by excluding an electroneutral exchange. Mitochondrial bioenergetics were only transiently affected by Ca2+ uptake in the presence of large amounts of CaCl2, but not by Na+- induced Ca2+ release. 相似文献
10.
11.
Rat liver mitochondria may be subfractionated in sediment and supernatant fractions by swelling in the presence of EDTA and oxaloacetate. The sediment is largely depleted of the Ca2+-binding glycoprotein and its Ca2+-transporting activity may be as low as 10--20% of the starting value. Both the rate of Ca2+ uptake and the capacity to maintain a high Ca2+ concentration gradient across the membrane are depressed. Addition of an osmotic supernatant to the assay mixture may partially restore the original Ca2+-transporting ability. The active component in the supernatant is the Ca2+-binding glycoprotein. This is shown by the following facts: (a) the effect is enhanced by the addition of the purified glycoprotein to the supernatant; (b) precipitation of the glycoprotein from the supernatant by affinity chromatography-purified antibodies abolishes the stimulatory effect, and (c) in the presence of 130 microM Mg2+, the glycoprotein alone may restore fully the Ca2+-transporting ability of the particles. The maximal velocity is already reached at 0.1 microgram glycoprotein/mg mitochondrial protein. 相似文献
12.
13.
Ca(2+) is an important regulatory ion and alteration of mitochondrial Ca(2+) homeostasis can lead to cellular dysfunction and apoptosis. Ca(2+) is transported into respiring mitochondria via the Ca(2+) uniporter, which is known to be inhibited by Mg(2+). This uniporter-mediated mitochondrial Ca(2+) transport is also shown to be influenced by inorganic phosphate (Pi). Despite a large number of experimental studies, the kinetic mechanisms associated with the Mg(2+) inhibition and Pi regulation of the uniporter function are not well established. To gain a quantitative understanding of the effects of Mg(2+) and Pi on the uniporter function, we developed here a mathematical model based on known kinetic properties of the uniporter and presumed Mg(2+) inhibition and Pi regulation mechanisms. The model is extended from our previous model of the uniporter that is based on a multistate catalytic binding and interconversion mechanism and Eyring's free energy barrier theory for interconversion. The model satisfactorily describes a wide variety of experimental data sets on the kinetics of mitochondrial Ca(2+) uptake. The model also appropriately depicts the inhibitory effect of Mg(2+) on the uniporter function, in which Ca(2+) uptake is hyperbolic in the absence of Mg(2+) and sigmoid in the presence of Mg(2+). The model suggests a mixed-type inhibition mechanism for Mg(2+) inhibition of the uniporter function. This model is critical for building mechanistic models of mitochondrial bioenergetics and Ca(2+) handling to understand the mechanisms by which Ca(2+) mediates signaling pathways and modulates energy metabolism. 相似文献
14.
目的和方法采用大鼠心肌线粒体体外孵育的方法,观察线粒体L-精氨酸/一氧化氮系统对线粒体Ca2+转运功能的影响.结果NO生成的底物L-Arg (10-4 mol/L)、外源性NO供体硝普纳(5×10-7 mol/L)孵育的线粒体NO-2的生成量分别高于对照组66%、89% (P<0.01);钙含量较对照组分别低40%、54% (P<0.01); 线粒体Ca2+的摄入量较对照组分别减少67%、85%(P<0.01), 线粒体Ca2+释放率(11%、8%)降低与对照组(14%)相比差异显著(P<0.05、P<0.01).NO合酶抑制剂左旋硝基精氨酸甲酯(L-NAME, 10-4 mol/L)与相同浓度的L-Arg共同孵育的线粒体,明显抑制了L-Arg对线粒体的效应,与单纯L-Arg组比较,NO2生成减少,线粒体钙含量和反映线粒体45 Ca2+的摄入与释放能力都接近对照组水平.结论心肌线粒体L-精氨酸/一氧化氮系统参与了线粒体对心肌细胞Ca2+浓度的调节,其生理和病理生理意义值得进一步探讨. 相似文献
15.
16.
A rise in cytosolic Ca(2+) concentration is used as a key activation signal in virtually all animal cells, where it triggers a range of responses including neurotransmitter release, muscle contraction, and cell growth and proliferation [1]. During intracellular Ca(2+) signaling, mitochondria rapidly take up significant amounts of Ca(2+) from the cytosol, and this stimulates energy production, alters the spatial and temporal profile of the intracellular Ca(2+) signal, and triggers cell death [2-10]. Mitochondrial Ca(2+) uptake occurs via a ruthenium-red-sensitive uniporter channel found in the inner membrane [11]. In spite of its critical importance, little is known about how the uniporter is regulated. Here, we report that the mitochondrial Ca(2+) uniporter is gated by cytosolic Ca(2+). Ca(2+) uptake into mitochondria is a Ca(2+)-activated process with a requirement for functional calmodulin. However, cytosolic Ca(2+) subsequently inactivates the uniporter, preventing further Ca(2+) uptake. The uptake pathway and the inactivation process have relatively low Ca(2+) affinities of approximately 10-20 microM. However, numerous mitochondria are within 20-100 nm of the endoplasmic reticulum, thereby enabling rapid and efficient transmission of Ca(2+) release into adjacent mitochondria by InsP(3) receptors on the endoplasmic reticulum. Hence, biphasic control of mitochondrial Ca(2+) uptake by Ca(2+) provides a novel basis for complex physiological patterns of intracellular Ca(2+) signaling. 相似文献
17.
Henry R. Mahler 《Journal of cellular biochemistry》1973,1(6):449-460
Ethidium bromide (3, 8-diamino-5-ethyl-6-phenylphenanthridinium bromide) and euflavine (3, 6-diamino-10-methylacridinium chloride) are superficially similar in structure and ability to intercalate into DNA. However, they exhibit qualitative differences in their ability to bring about a mitochondrial mutation (ρ+ → ρ?) in Saccharomyces cerevisiae. This investigation tried to establish and compare the essential structural prerequisites in three series of planar, heterocyclic dyes: the phenanthridines (P series), the acridines (A series), and molecules with different heteroatoms related to acridines (X series). Compounds capable of bringing about the mutation in the complete absence of growth and energy sources are restricted to di-primary amines in the P series: quaternization of the ring nitrogen, and an aromatic side chain at C-6 also appear essential. Compounds in the A series are mutagenic only with growing cells; quaternization (C1 through C4) is essential. The 10-allyl derivative is unusual; it is highly effective even in buffer supplemented only with an energy source. The results are interpreted in terms of a model that requires interaction of the mutagen with the mitochondrial inner membrane as well as with its DNA. 相似文献
18.
The relationship between mitochondrial Ca2 transport and permeability transition pore (PTP) opening as well as the effects of mitochondrial energetic status on mitochondrial Ca2 transport and PTP opening were studied. The results showed that the calcium-induced calcium release from mitochondria (mClCR) induced PTP opening. Inhibitors for electron transport of respiratory chain inhibited mClCR and PTP opening. Partial recovery of electron transport in respiratory chain resulted in partial recovery of mClCR and PTP opening. mClCR and PTP opening were also inhibited by CCCP which eliminated transmembrane proton gradient. The results indicated that mitochondrial Ca2 transport and PTP opening are largely dependent on electron transport and energy coupling. 相似文献
19.
The relationship between mitochondrial Ca2+ transport and permeability transition pore (PTP) opening as well as the effects of mitochondrial energetic status on mitochondrial Ca2+ transport and PTP opening were studied. The results showed that the calcium-induced calcium release from mitochondria (mCICR) induced PTP opening. Inhibitors for electron transport of respiratory chain inhibited mCICR and PTP opening. Partial recovery of electron transport in respiratory chain resulted in partial recovery of mCICR and PTP opening. mCICR and PTP opening were also inhibited by CCCP which eliminated transmembrane proton gradient. The results indicated that mitochondrial Ca2+ transport and PTP opening are largely dependent on electron transport and energy coupling. 相似文献
20.
Effects of dopamine on the membrane permeability transition, thioredoxin reductase activity, production of free radicals and oxidation of sulfhydryl groups in brain mitochondria and the Ca2+ uptake by Na+-Ca2+ exchange and sulfhydryl oxidation in brain synaptosomes were examined. The brain mitochondrial swelling and the fall of transmembrane potential were altered by pretreatment of dopamine in a dose dependent manner. Depressive effect of dopamine on mitochondrial swelling was reversed by 10 g/ml catalase, and 10 mM DMSO. The activities of thioredoxin reductase in intact or disrupted mitochondria were decreased by dopamine (1-100 M), 25 M Zn2+ and 50 M Mn2+. Dopamine-inhibited enzyme activity was reversed by 10 g/ml SOD and 10 g/ml catalase. Pretreatment of dopamine decreased Ca2+ transport in synaptosomes, which was restored by 10 g/ml SOD and 10 mM DMSO. Dopamine (1-100 M) in the medium containing mitochondria produced superoxide anion and hydrogen peroxide, while its effect on nitrite production was very weak. The oxidation of sulfhydryl groups in mitochondria and synaptosomes were enhanced by dopamine with increasing incubation times. Results suggest that dopamine could modulate membrane permeability in mitochondria and calcium transport at nerve terminals, which may be ascribed to the action of free radicals and the loss of reduced sulfhydryl groups. 相似文献