首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herbivores can dramatically diminish revegetation success, but associational refuge theory predicts that neighbouring plants could hinder browsing of planted seedlings. The key to strategic restoration using associational refuge is to define which patch variables are effective against the appropriate herbivores, at multiple scales, and to understand which stages of the foraging process these variables disrupt. Our study aimed to test the capacity of existing vegetation to act as associational refuge for planted seedlings by affecting search, detection and consumption decisions, and more generally influence herbivore foraging patterns. We conducted a field trial with free‐ranging, mammalian herbivores and nursery‐raised, native tree seedlings. We quantified seedling browsing damage over time in relation to a suite of existing patch variables at two spatial scales (100 m2 and 4 m2). After two months, 78% of seedlings were browsed, suffering mean foliage loss of 90.5%. Focal seedlings were almost exclusively consumed by swamp wallabies Wallabia bicolor, an abundant generalist browser. Once a swamp wallaby investigated a seedling, the probability of consumption was high (86%). At the large scale, browsing of seedlings was delayed in patches with lower canopy cover and fewer browsed plant species. Seedlings in fern‐dominated patches escaped browsing for longer than those in grass‐dominated patches. At the small scale, browsing was delayed with higher cover of understorey vegetation. Associational refuge was provided by vegetation with characteristics, and at spatial scales, consistent with disrupted search and detection of focal seedlings by herbivores. Thus strategic placement of seedlings in existing vegetation – based on understanding which herbivore species is responsible and how it responds to vegetation – can take advantage of associational refuge during restoration. However, given rapid seedling detection by herbivores, associational refuge may be inadequate in the long‐term under high browsing pressure unless high absolute numbers of seedlings are planted among refuge.  相似文献   

2.
Diet selection by mammalian herbivores is often influenced by plant community composition, and numerous studies have focused on the relationships between herbivore foraging decisions and food/plant species abundance. However, few have examined the role of neighbour palatability in affecting foraging of a target plant by large mammalian herbivores. We used a large-scale field dataset on diet selection by red deer Cervus elaphus in Fiordland National Park, New Zealand to: (1) estimate the palatability of native forest plant species to introduced deer from observed patterns of browse damage; and (2) examine whether intraspecific variation in browsing of plants can be related to variation in the local abundance of alternative forage species. Overall, 21 of the 53 forest species in our dataset were never browsed by deer. At a community level, plants were more likely to be browsed if they were in a patch of vegetation of high forage quality, containing high abundances of highly palatable species and/or low abundances of less-palatable species. Our findings suggest that deer make foraging decisions at both a coarse-grain level, selecting vegetation patches within a landscape based on the overall patch quality, and at a fine-grain level by choosing among individual plants of different species.  相似文献   

3.
Long‐lived trees experience different levels of damage due to mammalian herbivores. To untangle the mechanisms that underlie this variation, we combined chemical with dendrochronological analyses to study variation in browsing on Western redcedars (Thuja plicata) on Haida Gwaii (British Columbia, Canada). Since the last glaciation, Haida Gwaii forests had lacked large herbivore browser until Sitka black‐tailed deer (Odocoileus hemionus sitkensis) were introduced at the beginning of the 20th century. Dendrochronology yielded information on radial growth and plant annual responses to environmental stresses including herbivory. Secondary metabolite content and plant nutritional quality provided insights into proximate causes of food choices made by herbivores. We sampled lightly‐ and heavily‐browsed young trees at four sites: three clear‐cut sites with high browsing pressure and one old‐growth forest site where browsing pressure had, until recently, been lower. Heavily‐browsed young trees had lower concentrations of secondary metabolites and were of lower nutritive value than lightly‐browsed trees at all sites. Under high browsing pressure, tree growth patterns suggested that all young trees were initially severely browsed until some trees, currently scored as lightly‐browsed, started to escape deer. At the old‐growth site, both lightly‐ and heavily‐browsed trees tended to have lower overall average secondary metabolite concentrations than those of all other sites, a trend possibly related to greater canopy closure. Lightly‐browsed trees were older than heavily‐browsed ones which resulted, during the period of lower browsing pressure, in higher growth rate and a same pattern of change in growth from one year to the next year. This suggests that, under low browsing pressure, selection of young trees related to chemical defense was weak and that growth differences due to other factors than browsing could be expressed. Under strong browsing pressure, however, all young trees had equally low growth rates until trees with better genetic potential to produce effective defenses were able to escape deer. This suggests that selection by deer could occur on a long‐lived tree.  相似文献   

4.
Johan Månsson 《Ecography》2009,32(4):601-612
Understanding temporal variation in habitat selection and browsing intensity by large herbivores is fundamental because of their large impact on the ecosystems. I studied the annual variation in winter browsing pressure on young trees and habitat selection by moose Alces alces over a ten year period. Specifically, the relationships between browsing pressure on Scots pine Pinus sylvestris and two birch species ( Betula ssp.) and three explanatory variables – 1) availability of forage, 2) moose density (estimated by pellet group counts) and 3) snow cover was studied. At a larger spatial scale (forest stand level) the relationship between moose habitat selection between three different habitat types (forest <30 yr, forest>30 yr and mire) and two explanatory variables, 1) snow condition and 2) moose density, were studied. Browsing pressure on Scots pine, the dominating food plant, was related to forage availability, moose density and snow condition. No significant relationships between any of the three explanatory variables and browsing pressure on the two birch species were found. Moose selection for certain habitats varied between years and was affected by number of days with >0.10 m of snow.
Habitat selection was not significantly related to moose density and the relationship between overall moose density and habitat specific moose densities was proportional within the studied density range. These findings have implications for understanding varying browsing patterns – and will affect both the ability to predict herbivores' effect on the forest ecosystem. A snow dependent browsing pattern also indicates that one can expect a long term decrease in browsing pressure on the tree and shrub layer as a consequence of the ongoing large-scale climate change.  相似文献   

5.
Changes in climate and in browsing pressure are expected to alter the abundance of tundra shrubs thereby influencing the composition and species richness of plant communities. We investigated the associations between browsing, tundra shrub canopies and their understory vegetation by utilizing a long‐term (10–13 seasons) experiment controlling reindeer and ptarmigan herbivory in the subarctic forest tundra ecotone in northwestern Fennoscandia. In this area, there has also been a consistent increase in the yearly thermal sum and precipitation during the study period. The cover of shrubs increased 2.8–7.8 fold in exclosures and these contrasted with browsed control areas creating a sharp gradient of canopy cover of tundra shrubs across a variety of vegetation types. Browsing exclusions caused significant shifts in more productive vegetation types, whereas little or no shift occurred in low‐productive tundra communities. The increased deciduous shrub cover was associated with significant losses of understory plant species and shifts in functional composition, the latter being clearest in the most productive plant community types. The total cover of understory vegetation decreased along with increasing shrub cover, while the cover of litter showed the opposite response. The cover of cryptogams decreased along with increasing shrub cover, while the cover of forbs was favoured by a shrub cover. Increasing shrub cover decreased species richness of understory vegetation, which was mainly due to the decrease in the cryptogam species. The effects were consistent across different types of forest tundra vegetation indicating that shrub increase may have broad impacts on arctic vegetation diversity. Deciduous shrub cover is strongly regulated by reindeer browsing pressure and altered browsing pressure may result in a profound shrub expansion over the next one or two decades. Results suggest that the impact of an increase in shrubs on tundra plant richness is strong and browsing pressure effectively counteracts the effects of climate warming‐driven shrub expansion and hence maintains species richness.  相似文献   

6.
The way herbivores select what to eat is of considerable practical and theoretical interest, and has given rise to different theories and hypotheses. The plant vigour hypothesis predicts that herbivores feed preferentially on vigorous, i.e., large and/or fast-growing plants or plant parts. These predictions have previously primarily been tested on variation within plant species. Here we test whether differences in vigour among plant species in the same environment can explain differences in herbivore attack. We studied variation in browsing pressure by a guild of large herbivores on different woody species in an African savanna ecosystem. Shoot growth rate, annual shoot length, basal shoot diameter and annual shoot volume of 14 woody plant species were measured in the field. Plant species’ shoot vigour represented by the first PCA axis scores generated from the four shoot variables were then related to browsing pressure (% utilisation) on each of the species by native ungulates and elephant. Nutrient and fibre concentrations and tannin activity were also determined for the 14 woody plant species. We found ungulate browsing pressure to show a unimodal relationship with plant species’ shoot vigour. The heaviest browsing pressure was on plant species with shoots of intermediate vigour. We suggest that species with less vigorous shoots had low nutrient and high fibre concentrations and offered small bite sizes, whereas species with vigorous shoots had high nutrient concentrations but larger shoot diameters than the bite diameters of browsing ungulates. Elephant browsing pressure was not related to plant species’ shoot vigour.  相似文献   

7.
Foraging theory predicts that diet breadth should expand as food availability decreases. We tested this by looking at the winter browsing behaviour of the brown hare Lepus europaeus. We predicted selective feeding on different woody plant species, diet generalisation under increasingly severe winter conditions and a rank preference between the different food items. Following a period of severe winter conditions, we censused browsing marks of brown hares on woody plants at six sites situated at different altitudes (340 – 600 m a. s. l.) in Upper Franconia, Germany. We assumed that access to ground vegetation, which is the general diet of brown hares, was more restricted at sites with higher snow cover. The results provided support for all of our predictions: Feeding intensity varied strongly between the different plant species indicating selectivity of feeding. The number and also the percentage of browsed woody plant species was positively correlated with the altitude of the study site indicating a wider diet breadth in situations where less food was available. On the basis of a rank model on the food choice of brown hares, which was evaluated by an independent data set, we conclude that brown hares show a rank preference with regard to different groups of woody plant species. Our findings support the assumption that food restricted hares increasingly include unfavourable, low quality items into the diet.  相似文献   

8.
In this study, we demonstrate that the mountain hare and roe deer compete with each other. This was determined using "natural experiments" of populations found in sympatry and allopatry on the islands along the west coast of Norway. We demonstrate that both species occupy the same habitats, share the same food resources and that food availability is limited. Two browsing species as different in size as roe deer and mountain hare might be expected to partition the available vegetation (e.g. woody scrub) in terms of height above ground level. However, from the evidence collected, the feeding-height-separation hypothesis must be rejected as an explanation for ecological separation between roe deer and mountain hares because there was extensive height overlap in resource utilisation by both species and neither species changed its feeding height in response to the presence of the other. Total browse utilisation did not increase when both species were together; rather, species-specific browse utilisation declined when the other species was present. However, the foraging behaviour of each herbivore varied significantly between the allopatric and sympatric sites. When both herbivores were present, the clip diameter of shoots browsed by mountain hares declined to match those selected by roe deer, while roe deer switched from a browse-dominated diet to a diet dominated by winter-green gramineae. The change to smaller-diameter shoots likely resulted in the hare increasing its intake of digestion-inhibiting or toxic secondary metabolites, while the alternative choice of digging through the snow like roe deer to reach the winter-green gramineae is a practice considered energetically too costly for hares. On this basis, we conclude that the enforced switch to a nutritionally inferior diet by mountain hares at the sympatric sites may result in changes to growth rate and body size which consequently impact on mortality and may explain the competitive superiority of the roe deer.  相似文献   

9.
Previous studies on the effects of herbivores on nutrient cycling have given little consideration to the relationship between soil nitrogen (N) and phosphorus (P) availability. Here we examined how browsing by red deer influences the relative availability of N and P in a regenerating woodland ecosystem. We found that removal of browsing by fencing for 14 years led to a shift from N toward P limitation of the dominant tree species Betula pubescens . This was evidenced by a significant increase in foliar N:P ratio of B. pubescens as a result of removal of browsing; mean N:P ratio of foliage from browsed areas was 13.2 suggesting that trees growing in browsed areas were N limited, whereas foliage from unbrowsed areas had a mean N:P ratio of 15.8, suggesting that these areas were more P limited. Further evidence of a shift toward P limitation in unbrowsed areas came from the finding that root uptake of labelled 32P was significantly greater in roots collected from unbrowsed than browsed trees. Soil phosphatase activity did not significantly differ between browsed and unbrowsed areas. Our data indicate therefore that herbivores have the potential to significantly affect the stoichiometry of N and P in forest ecosystems.  相似文献   

10.
Aims In this study, we examine two common invasion biology hypotheses—biotic resistance and fluctuating resource availability—to explain the patterns of invasion of an invasive grass, Microstegium vimineum.Methods We used 13-year-old deer exclosures in Great Smoky Mountains National Park, USA, to examine how chronic disturbance by deer browsing affects available resources, plant diversity, and invasion in an understory plant community. Using two replicate 1 m 2 plots in each deer browsed and unbrowsed area, we recorded each plant species present, the abundance per species, and the fractional percent cover of vegetation by the cover classes: herbaceous, woody, and graminoid. For each sample plot, we also estimated overstory canopy cover, soil moisture, total soil carbon and nitrogen, and soil pH as a measure of abiotic differences between plots.Important findings We found that plant community composition between chronically browsed and unbrowsed plots differed markedly. Plant diversity was 40% lower in browsed than in unbrowsed plots. At our sites, diversity explained 48% and woody plant cover 35% of the variation in M. vimineum abundance. In addition, we found 3.3 times less M. vimineum in the unbrowsed plots due to higher woody plant cover and plant diversity than in the browsed plots. A parsimonious explanation of these results indicate that disturbances such as herbivory may elicit multiple conditions, namely releasing available resources such as open space, light, and decreasing plant diversity, which may facilitate the proliferation of an invasive species. Finally, by testing two different hypotheses, this study addresses more recent calls to incorporate multiple hypotheses into research attempting to explain plant invasion.  相似文献   

11.
Large herbivorous vertebrates have strong interactions with vegetation, affecting the structure, composition and dynamics of plant communities in many ways. Living large herbivores are a small remnant of the assemblages of giants that existed in most terrestrial ecosystems 50 000 years ago. The extinction of so many large herbivores may well have triggered large changes in plant communities. In several parts of the world, palaeoecological studies suggest that extinct megafauna once maintained vegetation openness, and in wooded landscapes created mosaics of different structural types of vegetation with high habitat and species diversity. Following megafaunal extinction, these habitats reverted to more dense and uniform formations. Megafaunal extinction also led to changes in fire regimes and increased fire frequency due to accumulation of uncropped plant material, but there is a great deal of variation in post-extinction changes in fire. Plant communities that once interacted with extinct large herbivores still contain many species with obsolete defences against browsing and non-functional adaptations for seed dispersal. Such plants may be in decline, and, as a result, many plant communities may be in various stages of a process of relaxation from megafauna-conditioned to megafauna-naive states. Understanding the past role of giant herbivores provides fundamental insight into the history, dynamics and conservation of contemporary plant communities.  相似文献   

12.
Browsing of tree saplings by deer hampers forest regeneration in mixed forests across Europe and North America. It is well known that tree species are differentially affected by deer browsing, but little is known about how different facets of diversity, such as species richness, identity, and composition, affect browsing intensity at different spatial scales. Using forest inventory data from the Hainich National Park, a mixed deciduous forest in central Germany, we applied a hierarchical approach to model the browsing probability of patches (regional scale) as well as the species‐specific proportion of saplings browsed within patches (patch scale). We found that, at the regional scale, the probability that a patch was browsed increased with certain species composition, namely with low abundance of European beech (Fagus sylvatica L.) and high abundance of European ash (Fraxinus excelsior L.), whereas at the patch scale, the proportion of saplings browsed per species was mainly determined by the species’ identity, providing a “preference ranking” of the 11 tree species under study. Interestingly, at the regional scale, species‐rich patches were more likely to be browsed; however, at the patch scale, species‐rich patches showed a lower proportion of saplings per species browsed. Presumably, diverse patches attract deer, but satisfy nutritional needs faster, such that fewer saplings need to be browsed. Some forest stand parameters, such as more open canopies, increased the browsing intensity at either scale. By showing the effects that various facets of diversity, as well as environmental parameters, exerted on browsing intensity at the regional as well as patch scale, our study advances the understanding of mammalian herbivore–plant interactions across scales. Our results also indicate which regeneration patches and species are (least) prone to browsing and show the importance of different facets of diversity for the prediction and management of browsing intensity and regeneration dynamics.  相似文献   

13.
Walter Leuthold 《Oecologia》1978,35(2):241-252
Summary Data on food habits and habitat preferences of four browsing herbivores (black rhinoceros, giraffe, gerenuk and lesser kudu) were analyzed to assess niche width for each species and niche overlap between pairs of species. All four species depended heavily on woody plants as food, and overlap in the utilization of different plant types (trees and shrubs, herbs, grasses, etc.) was very great in three of six species paris. When individual plant species were considered, markedly less overlap was apparent. Three of the four ungulate species preferred the most densely wooded vegetation type. Overlap in habitat preferences tended to be least in those pairs of species with the greates dietary overlap, which resulted in some degree of ecological separation. This was further increased by differences in browsing level. Seasonal variations in the browsing level of the giraffe had the effect of reducing overlap with the other species in the dry season, when food was in relatively short supply. Whether or not actual competition existed among the four ungulate species could not be established; in any event, it would probably be less important than possible competition exerted by the elephant, the dominant herbivore by far in the ecosystem. The ecological separation evident among the four browsing species probably permitted them to coexist in the area before the elephant reached its present dominant position and started altering the original vegetation.Formerly Tsavo East Research Station, Voi, Kenya  相似文献   

14.
Browsing mammals strongly modify the structure of vegetation of forest-tundra ecotones. We investigated the impact of reindeer browsing on growth and morphology of an arctic willow, Salix glauca, by studying plants inside and outside fenced areas in a tundra habitat at the tree line. We also studied if reindeer feeding has an effect on the forage availability for willow grouse, a herbivore sharing the same food plant. Analyses of 6-year data show that reindeer strongly reduces the growth of tundra willow and changes plant morphology to a stunted growth form. Intense reindeer browsing on willow limited the forage availability for willow grouse and grouse fed less on reindeer-browsed willow than willows protected from reindeer browsing. The results of this study imply that herbivores can counteract the increase of shrubs in forest-tundra ecotones, as has been predicted in some studies discussing the effects of climatic warming on vegetation. Furthermore, trophic interactions should be incorporated in modelling vegetation changes as a response to increased temperatures.  相似文献   

15.
Manipulations of herbivores in protected areas may have profound effects on ecosystems. We examine short‐term effects on tree species assemblages and resource utilization by a mesoherbivore and small‐size herbivores (ungulates <20 kg) in Sand Forest, after browsing release from a megaherbivore (elephant), or both a mega‐ and mesoherbivore (nyala), respectively. Effects were experimentally separated using replicated exclosures where all trees were counted, identified to species and browsing events recorded. Tree species assemblages were impacted by both elephant and nyala, and by each herbivore species individually. Tree turnover rates were higher where both herbivore species were present than in their combined absence. Diet was segregated among elephant, nyala and small‐size herbivores. Both resource specificity and browsing pressure by nyala increased in absence of elephant; small‐size herbivores increased resource specificity in absence of elephant, and increased browsing pressure in absence of both elephant and nyala. This implies interference competition with competitive release. The indirect effect of the manipulation of herbivore populations, through the removal of one or two herbivore species, caused a shift in tree species composition and diet of smaller‐size herbivores. These indirect effects, especially on tree species composition, can become critical as they affect vegetation dynamics, biodiversity and ecosystem processes. Therefore, in order to conserve habitats and biodiversity across all trophic levels, conservation managers should consider the effects of: (1) the full herbivore assemblage present; and (2) any effects of altering the relative and absolute abundance of different herbivore species on other herbivore species and vegetation.  相似文献   

16.
Browsing by ungulates may induce plant responses and affect subsequent plant food quality for other animals. Populations of many deer species have increased to unprecedented levels in Europe and North America. In Norway, population densities of red deer (Cervus elaphus) have increased over the past decades, but little is known about how increased deer browsing pressure may change the palatability of key food plants for other taxa in the boreal ecosystem. We conducted a cafeteria experiment to assess if long-term deer-browsing intensity affected the palatability of bilberry (Vaccinium myrtillus) leaves for leaf-eating larvae (mainly Lepidoptera). We found that leaf-eating insect larvae preferred bilberry leaves from the lightly browsed bilberry plants; the larvae consumed twice as much leaf biomass from the lightly browsed plants than from the unbrowsed and moderately browsed ones, and four times more than from highly browsed plants. Larvae never selected leaves from highly browsed plants as their first choice. Our study suggests that browsing-induced changes in the quality of shared food plants may be important in mediating indirect interactions between browsers of widely separated taxa. Whereas low levels of long-term red deer browsing increases the palatability of bilberry leaves for leaf-eating larvae, high browsing pressure reduces food consumption. Whether changes in palatability lead to changes in population densities of leaf-eating larvae remains to be studied, but any such adverse effects could have cascading ecological consequences for insectivorous birds and mammals.  相似文献   

17.
Using an exclosure experiment in managed woodland in eastern England, we examined species and guild responses to vegetation growth and its modification by deer herbivory, contrasting winter and the breeding season over 4 years. Species and guild responses, in terms of seasonal presence recorded by multiple point counts, were examined using generalized linear mixed models. Several guilds or migrant species responded positively to deer exclusion and none responded negatively. The shrub‐layer foraging guild was recorded less frequently in older and browsed vegetation, in both winter and spring. Exclusion of deer also increased the occurrence of ground‐foraging species in both seasons, although these species showed no strong response to vegetation age. The canopy‐foraging guild was unaffected by deer exclusion or vegetation age in either season. There was seasonal variation in the responses of some individual resident species, including a significantly lower occurrence of Eurasian Wren Troglodytes troglodytes and European Robin Erithacus rubecula in browsed vegetation in winter, but no effect of browsing on those species in spring. Ordinations of bird assemblage compositions also revealed seasonal differences in response to gradients of vegetation structure generated by canopy‐closure and exclusion of deer. Positive impacts of deer exclusion in winter are probably linked to reduced thermal cover and predator protection afforded by browsed vegetation, whereas species that responded positively in spring were also dependent on a dense understorey for nesting. The effects on birds of vegetation development and its modification by herbivores extend beyond breeding assemblages, with different mechanisms implicated and different species affected in winter.  相似文献   

18.
Ecological theory predicts the strongest ecosystem effects of herbivory when dominant and ecologically important species are consumed. Bilberry, Vaccinium myrtillus, is such a key plant species, attractive to many other species in the boreal forests, for example ungulate and invertebrate herbivores. Large herbivores may remove substantial biomass and alter plant quality and therefore affect abundance and populations of invertebrate animals sharing the same food plant. We combined experimental exclusion of ungulates with a browsing intensity gradient to investigate the 15-year effect of ungulate (Cervus elaphus and Ovis aries) browsing on bilberry plant size and on bilberry-feeding herbivorous larvae (Lepidoptera and Symphyta), in a Norwegian old growth boreal forest ecosystem. Bilberry ramets in exclosure plots had nearly nine times higher dry mass and three times higher abundance of invertebrates feeding on them than in ungulate-access plots. Sweep-netting data verified these findings as larval numbers were twice as high in exclosure plots. The pattern in the large herbivore effects on bilberry size and abundance of herbivorous larvae were identical along the browsing gradient. Differences in larval abundance between treatments, as indicated by leaf-chewing, increased during the 15-year study period, and the community fluctuations were larger when ungulate herbivores were excluded. The browsing effect was moderated by plant quality as larval densities were lowest on both heavily-browsed and non-browsed plants, and highest on ramets that had 50–74% of annual shoots browsed. Our study supports previous findings in that bilberry is relatively disturbance tolerant and may recover quickly, but that ungulates may compete with herbivorous larvae for food biomass. Additionally, our results strongly indicates that population insect community peaks and fluctuations are dampened by ungulate consumption. Our findings add to the understanding on how ungulates may structure forest ecosystems directly and indirectly.  相似文献   

19.
Herbivore populations are influenced by a combination of food availability and predator pressure, the relative contribution of which is hypothesized to vary across a productivity gradient. In tropical forests, treefall gaps are pockets of high productivity in the otherwise less productive forest understory. Thus, we hypothesize that higher light availability in gaps will increase plant resources, thereby decreasing resource limitation of herbivores relative to the understory. As a result, predators should regulate herbivore populations in gaps, whereas food should limit herbivores in the understory. We quantified potential food availability and compared arthropod herbivore and predator densities in large forest light gaps and in the intact understory in Panama. Plants, young leaves, herbivores and predators were significantly more abundant per ground area in gaps than in the understory. This pattern was similar when we focused on seven gap specialist plant species and 15 shade-tolerant species growing in gaps and understory. Consistent with the hypothesis, herbivory rates were higher in gaps than the understory. Per capita predation rates on artificial caterpillars indicated higher predation pressure in gaps in both the dry and late wet seasons. These diverse lines of evidence all suggest that herbivores experience higher predator pressure in gaps and more food limitation in the understory.  相似文献   

20.
Introduced mammalian herbivores can significantly affect ecosystems. Here, I review evidence on effects of introduced mammalian herbivores in the temperate forest of the southern Andes. Available data suggest that introduced herbivores decrease the abundance of seedlings and saplings of dominant tree species in some forest types, which could impair forest regeneration. They also affect understory species composition. The mechanisms of the effects of introduced herbivores are complex, and include direct effects of browsing or trampling and more complex interactions such as indirect effects through other species. Some native mammalian and avian predators may benefit from increased food availability resulting from high densities of some introduced mammalian herbivores. In turn, enhanced populations of predators may have resulted in increased predation on native prey. Competition for resources and disease transmission have also been proposed as possible negative effects of introduced herbivores on native herbivores, but little evidence supports this claim. Little is known about effects on invertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号