首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluorescein isothiocyanate (FITC) fluorescently labels amino groups and has been useful in detecting conformational changes in transport proteins through quenching or enhancement of the fluorescence signal upon exposure of protein to substrates. Solubilized renal basolateral membrane proteins, enriched in Na+/HCO 3 cotransporter activity, were reconstituted into liposomes and treated with FITC or its nonfluorescent analogue PITC (phenyl isothiocyanate). In the absence of Na+ and HCO 3 , incubation of proteoliposomes with PITC or FITC significantly inhibited cotransporter activity. However, in the presence of Na+ and HCO 3 during labeling both agents failed to inhibit cotransporter activity, indicating that these probes interact specifically with the cotransporter. In the presence of the substrates Na+ and HCO 3 , PITC binds covalently to amino groups unprotected by substrates leaving the Na+/HCO 3 cotransporter available for specific labeling with FITC. Addition of NaHCO3 to FITC-labeled proteoliposomes resulted in a concentration-dependent enhancement of the fluorescence signal which was inhibited by pretreatment with 4,4-diisothiocyanostilbene 2,2-disulfonic acid (DIDS) prior to FITC labeling. SDS PAGE analysis of FITC-treated proteoliposomes showed the presence of two distinct fluorescent bands (approximate MW of 90 and 56 kD). In the presence of substrates, the fluorescence intensity of these bands was enhanced as confirmed by direct measurement of gel slice fluorescence. Thus, FITC detects conformational changes of the Na+/HCO 3 cotransporter and labels proteins which may represent the cotransporter or components of this cotransporter.This work was supported by the Merit Review Program from the Veterans Administration Central Office (J.A.L.A.), and the National Kidney Foundation of Illinois (A.A.B.).  相似文献   

2.
Recently, lanthanide (Ln) luminescent nanocrystals have attracted increasing attention in various fields such as biomedical imaging, lasers, and anticounterfeiting. However, due to the forbidden 4f–4f transition of lanthanide ions, the absorption cross-section and luminescence brightness of lanthanide nanocrystals are limited. To address the challenge, we constructed an optical oscillator-like system to repeatedly simulate lanthanide nanocrystals to enhance the absorption efficiency of lanthanide ions on excitation photons. In this optical system, the upconversion luminescence (UCL) of Tm3+ emission of ~450 nm excited by a 980 nm laser can be amplified by a factor beyond 104. The corresponding downshifting luminescence of Tm3+ at 1460 nm was enhanced by three orders of magnitude. We also demonstrated that the significant luminescence enhancement in the designed optical oscillator-like system was general for various lanthanide nanocrystals including NaYF4:Yb3+/Ln3+, NaErF4@NaYF4 and NaYF4:Yb3+/Ln3+@NaYF4:Yb3+@NaYF4 (Ln = Er, Tm, Ho) regardless of the wavelengths of excitation sources (808 and 980 nm). The mechanism study revealed that both elevated laser power in the optical system and multiple excitations on lanthanide nanocrystals were the main reason for the luminescence amplification. Our findings may benefit the future development of low-threshold upconversion and downshifting luminescence of lanthanide nanocrystals and expand their applications.  相似文献   

3.
Hexanuclear lanthanide complexes have been used as molecular precursors to built 3d–4f molecular chains. These complexes were originally targeted as building blocks for the synthesis of lanthanides-containing coordination polymers but reacting them with the 3d molecular precursor [Cu(opba)]2? lead to Ln(III)–Cu(II) hetero-bimetallic chains with general formula [Ln(NO3)(DMSO)2Cu(opba)(DMSO)2] with Ln = Gd–Er. The reaction mechanism can be explained by a sterically-induced reaction where the attack of the [Cu(opba)]2? moiety is driven by the hexanuclear lanthanide clusters geometry. Static magnetic properties of the Gd- and Dy-based chains have been investigated as well as the dynamic magnetic properties of the Dy-containing compound. These studies confirmed that this chemical strategy can possibly yield to 3d–4f single chain magnets.  相似文献   

4.
New lanthanide complexes of salicylaldehyde- Schiff bases with salicyloyl hydrazide and anthranilic acid, were synthesized by a novel method consisting of refluxing the mixtures of Schiff base ligands and lanthanide trichloroacetate in acetone. Solid complexes of formulae Ln(SHSASB)3·2H2O and Ln2(AASASB)3·2H2O where Ln = La---Yb and Y, were isolated. Pronto NMR and IR spectra for the complexes reveal the bidentate binding of both the Schiff base ligands to the lanthanide ion. Electronic spectra along with the conductance data for the complexes indicate a coordination number of six for the lanthanide ion in the complexes of both the Schiff bases.  相似文献   

5.
Paramagnetic relaxation enhancements from unpaired electrons observed in nuclear magnetic resonance (NMR) spectra present powerful long-range distance restraints. The most frequently used paramagnetic tags, however, are tethered to the protein via disulfide bonds, requiring proteins with single cysteine residues for covalent attachment. Here we present a straightforward strategy to tag proteins site-specifically with paramagnetic lanthanides without a tether and independent of cysteine residues. It relies on preferential binding of the complex between three dipicolinic acid molecules (DPA) and a lanthanide ion (Ln3+), [Ln(DPA)3]3−, to a pair of positively charged amino acids whose charges are not compensated by negatively charged residues nearby. This situation rarely occurs in wild-type proteins, allowing the creation of specific binding sites simply by introduction of positively charged residues that are positioned far from glutamate or aspartate residues. The concept is demonstrated with the hnRNPLL RRM1 domain. In addition, we show that histidine- and arginine-tags present binding sites for [Ln(DPA)3]3−.  相似文献   

6.
We studied changes in the chlorophyll (Chl) fluorescence components in chilling-stressed sweet potato (Ipomoea batatas L. Lam) cv. Tainung 57 (TN57, chilling-tolerant) and cv. Tainung 66 (TN66, chilling-susceptible). Plants under 12-h photoperiod and 400 μmol m−2 s−1 irradiance at 24/20 °C (day/night) were treated by a 5-d chilling period at 7/7 °C. Compared to TN66, TN57 exhibited a significantly greater basic Chl fluorescence (F0), maximum fluorescence (Fm), maximum fluorescence yield during actinic irradiation (Fm′ ), and the quantum efficiency of electron transport through photosystem 2, PS2 (ΦPS2). Chilling stress resulted in decrease in the potential efficiency of PS2 (Fv/Fm), ΦPS2, non-photochemical fluorescence quenching (NPQ), non-photochemical quenching (qN), and the occurrence of chilling injury in TN66. Chilling increased the likelihood of photoinhibition, characterized by a decline in the Chl fluorescence of both cultivars, and photoinhibition during low temperature stress generally occurred more rapidly in TN66.  相似文献   

7.
 The impact of ozone fumigation on chlorophyll a fluorescence parameters and chlorophyll content of birch trees grown at high and low fertilization were studied for 6-, 8-, and 12-week old leaves. Fluorescence parameters were measured with a portable fluorometer with its fibre optics tightly inserted in a gas exchange cuvette at light intensities from 0 to 220 μmol photons m−2 s−1. Ozone caused significant changes of primary photosynthetic reactions: a decrease of the quantum yield of photosystem II and an increase of non-photochemical quenching. In all leaves a biphasic light response of non-photochemical quenching was observed. Ozone fumigation shifted the onset of the second phase from a PFD of about 60 μmol m−2 s−1 to about 30 μmol m−2 s−1. While the fertilizer concentration had no influence on this character, high fertilization supply of plants partially reduced O3-induced damage. The light responses of Ft, Fm′ and NPQ observed in birch leaves grown in O3-free air indicate the existence of at least two different processes governing energy conversion of the photosynthetic apparatus at PS II in the range of PFD 0–200 μmol photons m−2 s−1. The first phase was attributed to a rather slowly relaxing type of non-photochemical quenching, which, at least at low PFD, is thought to be related to a state 1–2 transition. The further changes of the fluorescence parameters studied at higher PFD might be explained by an increase of energy-dependent quenching, connected with the energization of the thylakoid membrane and zeaxanthin synthesis. A major effect of ozone treatment was a lowering of PS II quantum yield. This reflects a reduction of PS II electron transport and corresponds to the reduction of CO2-fixation observed in ozonated leaves. Received: 24 September 1996 / Accepted: 27 January 1999  相似文献   

8.
The reactions of 2,2′-bipyridyl-3,3′-dicarboxylic acid (H2bpdc) and 1,10-phenanthroline (phen) with lanthanide (III) salts in different concentrations under hydrothermal conditions formed two series of supramolecular isomers of 1D zigzag chains of [Ln(bpdc)1.5(phen)(H2O)]n·3nH2O (1Ln·3H2O), and 2D frameworks of [Ln(bpdc)1.5(phen)(H2O)]n (2Ln), (Ln = Ho, Er, Tm, and Yb). At lower concentrations, the supramolecular isomers of 1Ln were formed, in which each isomer has a dinuclear centrosymmetric dimeric unit of [Ln2(phen)2(H2O)22-bpdc)2]2+, and the dimeric units are alternately connected by μ2-bpdc2− to form a 1D zigzag chain of 1Ln. At higher concentrations, the supramolecular isomers of 2Ln were formed. All the compounds of 2Ln are isomorphous, in which two μ3-bpdc2− bridge two [Ln(phen)(H2O)]3+ units to yield a 1D double-chains of [Ln2(phen)2(H2O)2(bpdc)2]n2n+, and [Ln2(phen)2(H2O)2(bpdc)2]n2n+ chains are further connected by μ4-bpdc2− to form a 2D network of [Ln(bpdc)1.5(phen)(H2O)]n. The 2D sheets are combined through the intersheet π-π interactions between the adjacent phen molecules to form a 3D structure of 2Ln. The compounds of Er(III), and Yb(III) exhibit corresponding characteristic photoluminescence in the near-infrared (NIR) region, in which 1Ln and 2Ln show obviously different emission intensity due to their different structures.  相似文献   

9.
The number of phosphate groups in the 5′,5′-polyphosphate bridge of mRNA-cap dinucleotide analogues affects kinetics of long-range electron transfer (ET) responsible for 3-methylbenzimidazole (m3B) fluorescence quenching in model dinucleotides. For instance, 3-methylbenzimidazolyl(5′-5′)guanosine dinucleotides (m3Bp n G, n = 2, 3, 4) having m3B donor, 5′-5′ polyphosphate bridge, and guanine (G) acceptor, exhibit exponential dependence of the ET rate on the number of phosphates, i.e. donor–acceptor distance. Involvement of the 5′-5′ polyphosphate bridge in the ET is strongly indicated by lack of m3B-G stacking effect on the exponential factor, which is the same at 20°C, where m3B-G intramolecular stacking dominates, as that at 75°C where stacking–unstacking equilibrium is shifted in favour of the unstacked structure.  相似文献   

10.
To investigate how excess excitation energy is dissipated in a ribulose-1,5-bisphospate carboxylase/oxygenase activase antisense transgenic rice with net photosynthetic rate (P N) half of that of wild type parent, we measured the response curve of P N to intercellular CO2 concentration (C i), electron transport rate (ETR), quantum yield of open photosystem 2 (PS2) reaction centres under irradiation (Fv′/Fm′), efficiency of total PS2 centres (ΦPS2), photochemical (qP) and non-photochemical quenching (NPQ), post-irradiation transient increase in chlorophyll (Chl) fluorescence (PITICF), and P700+ re-reduction. Carboxylation efficiency dependence on C i, ETR at saturation irradiance, and Fv′/Fm′, ΦPS2, and qP under the irradiation were significantly lower in the mutant. However, NPQ, energy-dependent quenching (qE), PITICF, and P700+ re-reduction were significantly higher in the mutant. Hence the mutant down-regulates linear ETR and stimulates cyclic electron flow around PS1, which may generate the ΔpH to support NPQ and qE for dissipation of excess excitation energy.  相似文献   

11.
Some new dimethoxyethane (DME) adducts of lanthanide trichlorides of formula [LnCl3(DME)2]n, n=1 or 2; (n=2, Ln=La, Ce, Pr, Nd; n=1, Ln=Eu, Tb, Ho, Tm, Lu) have been prepared by treating Ln2O3, or LnCl3 · nH2O, or Ln2(CO3)3, in DME as medium, with thionyl chloride at room temperature, eventually in the presence of water in the case of Ln2O3 and Ln2(CO3)3. The complexes from lanthanum to praseodymium included are chloro-bridged dimers. In the case of neodymium, the new results complement the literature data, showing that both the mononuclear and dinuclear species exist: neodymium can therefore be regarded as the turning element from dinuclear to mononuclear structures along the series. Only mononuclear complexes were isolated in the Eu-Lu sequence. The lanthanide contraction has been evaluated on the basis of the Ln-O and Ln-Cl bond distances on the isotypical series of the mononuclear complexes LnCl3(DME)2 covering a range of 12 atomic numbers.  相似文献   

12.
The changes in structure and function of 2,3-diphosphoglycerate-hemoglobin (2,3-DPG-Hb) induced by Ln3+ binding were studied by spectroscopic methods. The binding of lanthanide cations to 2,3-DPG is prior to that to Hb. Ln3+ binding causes the hydrolysis of either one from the two phosphomonoester bonds in 2,3-DPG non-specifically. The results using the ultrafiltration method indicate that Ln3+ binding sites for Hb can be classified into three categories: i.e. positive cooperative sites (NI), non-cooperative strong sites (NS) and non-cooperative weak sites (NW) with binding constants in decreasing order: KI>KS>KW. The total number of binding sites amounts to about 65 per Hb tetramer. Information on reaction kinetics was obtained from the change of intrinsic fluorescence in Hb monitored by stopped-flow fluorometry. Fluctuation of fluorescence dependent on Ln3+ concentration and temperature was observed and can be attributed to the successive conformational changes induced by Ln3+ binding. The results also reveal the bidirectional changes of the oxygen affinity of Hb in the dependence on Ln3+ concentration. At the range of [Ln3+]/[Hb]<2, the marked increase of oxygen affinity (P50 decrease) with the Ln3+ concentration can be attributed to the hydrolysis of 2,3-DPG, while the slight rebound of oxygen affinity in higher Ln3+ concentration can be interpreted by the transition to the T-state of the Hb tetramer induced by Ln3+ binding. This was indicated by the changes in secondary structure characterized by the decrease of α-helix content.  相似文献   

13.
Extracellular ATP triggers changes in intracellular Ca2+, ion channel function, and membrane trafficking in adipocytes. The aim of the present study was to determine which P2 receptors might mediate the Ca2+ signaling and membrane trafficking responses to ATP in brown fat cells. RT-PCR was used to determine which P2 receptors are expressed in brown fat cells. Responses to nucleotide agonists and antagonists were characterized using fura-2 fluorescence imaging of Ca2+ responses, and FM 1-43 fluorescence imaging and membrane capacitance measurements to assess membrane trafficking. The pharmacology of the Ca2+ responses fits the properties of the P2Y receptors for which mRNA is expressed, but the agonist and antagonist sensitivity of the membrane-trafficking response was not consistent with any P2 receptor described to date. Brown adipocytes expressed mRNA for P2Y2, P2Y6, and P2Y12 metabotropic receptors and P2X1, P2X2, P2X3, P2X4, P2X5, and P2X7 ionotropic receptors. The agonists ATP, ADP, UTP, UDP and 2′, 3′-(benzoylbenzoyl) ATP (BzATP) increased intracellular Ca2+, while 100 μM suramin, pyridoxal-phosphate-6-azophenyl-2′ 4′-disulfonic acid (PPADS), or Reactive Blue 2 partially blocked Ca2+ responses. ATP, but not ADP, UTP, UDP or BzATP activated membrane trafficking. The membrane response could be blocked completely with 1 μM PPADS but not by the antagonist MRS2179. We conclude that multiple P2 receptors mediate the ATP responses of brown fat cells, and that membrane trafficking is regulated by a P2 receptor showing unusual properties.  相似文献   

14.
The reaction of Ln(III) ions with the precursor [Cu(opba)]2− in DMSO has afforded a series of isostructural compounds of general chemical formula Ln2[Cu(opba)]3(DMSO)6(H2O) · (H2O), where Ln(III) stands for a lanthanide ion and opba stands for ortho-phenylenebis(oxamato). The crystal structure has been solved for the Gd(III) containing compound. It crystallizes in the orthorhombic system, space group Pbn21 (No. 33) with a = 9.4183(2) Å, b = 21.2326(4) Å, c = 37.9387(8) Å and Z = 4. The structure consists of ladder-like molecular motifs parallel to each other. To the best of our knowledge, this is the first Ln(III)Cu(II) coordination polymer family exhibiting the same crystal structure over the whole lanthanide series. The magnetic properties of the compounds have been investigated and the magnetic behavior of the Gd(III) containing compound was studied in more detail.  相似文献   

15.
Treatment of Ln(NO3)3 · 6H2O with 1, 2-phenylenedioxydiacetic acid (H2PDOA) in ethanol leads to the unusual 1-D double chain complexes {[Ln(PDOA)1.5 (H2O)3] · H2O}n (Ln = Sm (1), Eu (2), Dy (3)), in which the Ln3+ ions are linked by pentadentate and bideatate PDOA ligands in two different directions. The chain looks like a ladder containing two -Ln-O-C-O-Ln- chains and PDOA spacers, which has never been observed in the lanthanide carboxylate complexes, and they exhibit different photoluminescence properties.  相似文献   

16.
Jiang  Chuang-Dao  Gao  Hui-Yuan  Zou  Qi 《Photosynthetica》2003,41(2):267-271
Photosynthesis in iron-deficient soybean and maize leaves decreased drastically. The quantum yield of photosystem 2 (PS2) electron transport (ΦPS2), the efficiency of excitation energy capture by open PS2 reaction centres (Fv′/Fm′), and photochemical quenching coefficient (qP) under high irradiance were lowered significantly by iron deficiency, but non-photochemical quenching (NPQ) increased markedly. The analysis of the polyphasic rise of fluorescence transient showed that iron depletion induced a pronounced K step both in soybean and maize leaves. The maximal quantum yield of PS2 photochemistry (Φpo) decreased only slightly, however, the efficiency with which a trapped exciton can move an electron into the electron transport chain further than QA0) and the quantum yield of electron transport beyond QAEo) in iron deficient leaves decreased more significantly compared with that in control. Thus not only the donor side but also the acceptor of PS2 was probably damaged in iron deficient soybean and maize leaves. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Light-induced fluorescence changes of 9-aminoacridine, an indicator of proton gradient in energy-transducing membranes, were studied in Plectonema boryanum and other cyanobacteria. The fluorescence changes observed in cell suspensions resulted from a superposition of fluorescence quenching and enhancement as the analysis of the kinetic data shows. Both components of the fluorescence changes are abolished by 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) and m-chlorocarbonylcyanide phenylhydrazone. The inhibitory effect of DCMU is removed by 2,3,5,6- or N,N,N′,N′-tetramethyl-p-phenylenediamine. The fluorescence quenching sensitive to substrates and uncouplers of the photophosphorylation is only observed in membrane vesicles obtained by osmotic shock of P. boryanum spheroplasts. Presumably, light-induced quenching of the dye fluorescence in the cells of cyanobacteria is due to the proton transport from the cytoplasm in the inner space of thylakoids while fluorescence enhancement is due to the proton efflux from the cytoplasm into the incubation medium.  相似文献   

18.
《Inorganica chimica acta》1986,118(2):179-185
Successful syntheses of the first examples of homodinuclear macrocyclic lanthanide complexes are reported. The complexes were obtained as compounds of the 2:2 Schiff base formed by condensing 2,6-diformyl-p-cresol and triethylenetetramine (L7) by a template procedure using lanthanide nitrates and perchlorates. When reactant methanolic solutions were concentrated the complexes were deposited as yellow or orange microcrystalline precipitates, Ln2L7(NO3)4sigma; nH2O or Ln2L7(NO3)4tau; x(OH)x, x = 1 or 2, whereas solutions diluted three times deposited complexes as flaky off-white crystalline precipitates of light lanthanides. The orange Ln2L7(NO3)2(OH)2 complexes can be converted in quantitative yield to the off-white flaky form of Ln2L7(NO3)4sigma; nH2O by refluxing them in methanolic solution containing triethylenetetramine and a three-fold excess of Ln(NO3)3. The complexes were characterized by elemental analysis, fast atom bombardment mass spectrometry, UV-Vis and infrared spectroscopy and thermogravimetry. Interesting and mostly new polyatomic oxo clusters, e.g. Ln2O3+, Ln3O4+, Ln4O6+, Ln5O7+, were dominant in the mass spectra but are treated in detail elsewhere.  相似文献   

19.
The activity of lactate dehydrogenase (LDH, EC1.1.1.27) is often changed upon inflammatory responses in animals. Lanthanoid (Ln) was shown to provoke various inflammatory responses both in rats and mice; however, the molecular mechanism by which Ln3+ exert its toxicity has not been completely understood, especially that we know little about the mechanism of the interaction between Ln with 4f electron shell and alternation valence and LDH. In this report, we investigated the mechanisms of LaCl3, CeCl3, and NdCl3 on LDH activity in vivo and in vitro. Our results showed that La3+, Ce3+, and Nd3+ could significantly activate LDH in vivo and in vitro; the order of activation was Ce3+?>?Nd3+?>?La3+?>?control. The affinity of LDH for Ce3+ was higher than Nd3+ and La3+; the saturated binding sites for Ce3+ on the LDH protein were 1.2 and for La3+ and Nd3+ 1.55. Ln3+ caused the reduction of exposure degree of cysteine or tryptophan/tyrosine of LDH, the increase of space resistance, and the enhancement of α-helix in secondary structure of LDH, which was greatest in Ce3+ treatment, medium in Nd3+ treatment, and least in La3+ treatment. It implied that the changes of structure–function on LDH caused by Ln3+ were closely related to the characteristics of 4f electron shell and alternation valence in Ln.  相似文献   

20.
The modulation of I A K+ current by ten trivalent lanthanide (Ln3+) cations spanning the series with ionic radii ranging from 0.99 ? to 1.14 ? was characterized by the whole-cell patch clamp technique in bovine adrenal zona fasciculata (AZF) cells. Each of the ten Ln3+s reduced I A amplitude measured at +20 mV in a concentration-dependent manner. Smaller Ln3+s were the most potent and half-maximally effective concentrations (EC50s) varied inversely with ionic radius for the larger elements. Estimation of EC50s yielded the following potency sequence: Lu3+ (EC50= 3.0 μm) ≈ Yb3+ (EC50= 2.7 μm) > Er3+ (EC50= 3.7 μm) ≥ Dy3+ (EC50= 4.7 μm) > Gd3+ (EC50= 6.7 μm) ≈ Sm3+ (EC50= 6.9 μm) > Nd3+ (EC50= 11.2 μm) > Pr3+ (EC50= 22.3 μm) > Ce3+ (EC50= 28.0 μm) > La3+ (EC50= 33.7 μm). Ln3+s altered selected voltage-dependent gating and kinetic parameters of I A with a potency and order of effectiveness that paralleled the reduction of I A amplitude. Ln3+s markedly slowed activation kinetics and shifted the voltage-dependence of I A gating such that activation and steady-state inactivation occurred at more depolarized potentials. In contrast, Ln3+s did not measurably alter inactivation or deactivation kinetics and only slightly slowed kinetics of inactivated channels returning to the closed state. Replacement of external Ca2+ with Mg2+ had no effect on the concentration-dependent inhibition of I A by Ln3+s. In contrast to their action on I A K+ current, Ln3+s inhibited T-type Ca2+ currents in AZF cells without slowing activation kinetics. These results indicate that Ln3+ modulate I A K+ channels through binding to a site on I A channels located within the electric field but which is not specific for Ca2+. They are consistent with a model where Ln3+ binding to negative charges on the gating apparatus alters the voltage-dependence and kinetics of channel opening. Ln3+s modulate transient K+ and Ca2+ currents by two fundamentally different mechanisms. Received: 21 January 1997/Revised: 3 April 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号