首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The progression of an infection within a host determines the ability of a pathogen to transmit to new hosts and to maintain itself in the population. While the general connection between the infection dynamics within a host and the population-level transmission dynamics of pathogens is widely acknowledged, a comprehensive and quantitative understanding that would allow full integration of the two scales is still lacking. Here, we provide a brief discussion of both models and data that have attempted to provide quantitative mappings from within-host infection dynamics to transmission fitness. We present a conceptual framework and provide examples of studies that have taken first steps towards development of a quantitative framework that scales from within-host infections to population-level fitness of different pathogens. We hope to illustrate some general themes, summarize some of the recent advances and—maybe most importantly—discuss gaps in our ability to bridge these scales, and to stimulate future research on this important topic.  相似文献   

2.
In this paper we develop a mathematical model for Chagas disease with infection-age-dependent infectivity. The effects of vector and blood transfusion transmission are considered, and the infected population is structured by the infection age (the time elapsed from infection). The authors identify the basic reproduction ratio R0 and show that the disease can invade into the susceptible population and unique endemic steady state exists if R0 > 1, whereas the disease dies out if R0 is small enough. We show that depending on parameters, backward bifurcation of endemic steady state can occur, so even if R0 < 1, there could exist endemic steady states. We also discuss local and global stability of steady states.  相似文献   

3.
讨论了有限资源下的肺结核模型,得到了基本再生数,考虑了模型的双稳定性,用第二加型复合矩阵研究了模型平衡点的全局渐近稳定性.最后数值模拟验证理论结果.  相似文献   

4.
In order to obtain a reasonably accurate model for the spread of a particular infectious disease through a population, it may be necessary for this model to possess some degree of structural complexity. Many such models have, in recent years, been found to exhibit a phenomenon known as backward bifurcation, which generally implies the existence of two subcritical endemic equilibria. It is often possible to refine these models yet further, and we investigate here the influence such a refinement may have on the dynamic behaviour of a system in the region of the parameter space near R0=1.We consider a natural extension to a so-called Core Group model for the spread of a sexually transmitted disease, arguing that this may in fact give rise to a more realistic model. From the deterministic viewpoint we study the possible shapes of the resulting bifurcation diagrams and the associated stability patterns. Stochastic versions of both the original and the extended models are also developed so that the probability of extinction and time to extinction may be examined, allowing us to gain further insights into the complex system dynamics near R0=1. A number of interesting phenomena are observed, for which heuristic explanations are provided.  相似文献   

5.
The emerging threat of a human pandemic caused by the H5N1 avian influenza virus strain magnifies the need for controlling the incidence of H5N1 infection in domestic bird populations. Culling is one of the most widely used control measures and has proved effective for isolated outbreaks. However, the socio-economic impacts of mass culling, in the face of a disease which has become endemic in many regions of the world, can affect the implementation and success of culling as a control measure. We use mathematical modeling to understand the dynamics of avian influenza under different culling approaches. We incorporate culling into an SI model by considering the per capita culling rates to be general functions of the number of infected birds. Complex dynamics of the system, such as backward bifurcation and forward hysteresis, along with bi-stability, are detected and analyzed for two distinct culling scenarios. In these cases, employing other control measures temporarily can drastically change the dynamics of the solutions to a more favorable outcome for disease control.  相似文献   

6.
We study an epidemiological model which assumes that the susceptibility after a primary infection is r times the susceptibility before a primary infection. For r = 0 (r = 1) this is the SIR (SIS) model. For r > 1 + (μ/α) this model shows backward bifurcations, where μ is the death rate and α is the recovery rate. We show for the first time that for such models we can give an expression for the minimum effort required to eradicate the infection if we concentrate on control measures affecting the transmission rate constant β. This eradication effort is explicitly expressed in terms of α,r, and μ As in models without backward bifurcation it can be interpreted as a reproduction number, but not necessarily as the basic reproduction number. We define the relevant reproduction numbers for this purpose. The eradication effort can be estimated from the endemic steady state. The classical basic reproduction number R 0 is smaller than the eradication effort for r > 1 + (μ/α) and equal to the effort for other values of r. The method we present is relevant to the whole class of compartmental models with backward bifurcation.Dedicated to Karl Peter Hadeler on the occasion of his 70th birthday.  相似文献   

7.
While most of the world has enjoyed exponential economic growth, more than one-sixth of the world is today roughly as poor as their ancestors were many generations ago. Widely accepted general explanations for the persistence of such poverty have been elusive and are needed by the international development community. Building on a well-established model of human infectious diseases, we show how formally integrating simple economic and disease ecology models can naturally give rise to poverty traps, where initial economic and epidemiological conditions determine the long-term trajectory of the health and economic development of a society. This poverty trap may therefore be broken by improving health conditions of the population. More generally, we demonstrate that simple human ecological models can help explain broad patterns of modern economic organization.  相似文献   

8.
Under the U.S. Environmental Protection Agency’s mission to protect human health and the environment, the agency seeks to conduct research on the structure and function of ecosystems and to improve our understanding of the processes that contribute to the sustained health of the nation’s ecosystems and the well-being of human populations. Changes in biodiversity can profoundly impact the ability of ecosystems to provide clean water, energy, food, recreation, and other services that contribute to human well-being. In addition, changes in biodiversity can affect the transmission of infectious disease to humans, particularly vectorborne diseases such as malaria and Lyme disease. The Environmental Protection Agency’s new initiative supports interdisciplinary research to characterize the mechanisms that link biodiversity and human health and to use this knowledge to develop integrative tools and approaches for quantifying and predicting these relationships. Research on these links can have an important impact on our view of biodiversity and how we manage resources to protect human and ecosystem health. Disclaimer: This work was funded in part under Grant #CX3-832328 with the American Association for the Advance of Science (AAAS). The views expressed do not necessarily reflect the views of the Environmental Protection Agency.  相似文献   

9.
    
The past few years have seen a noticeable increase in the emergence of infectious diseases in wildlife, especially vector-borne diseases, presenting a challenge for the conservation of endangered species. One such vector-borne disease, avian malaria (Plasmodium spp.) is on the rise in New Zealand avifauna, threatening bird populations that are among the most extinction-prone in the world. Furthermore, recent reports have outlined an increase in deaths of native iconic bird species specifically due to this disease. In order to help manage breakouts of this pathogen at a local scale, we need a better understanding of potential drivers of the emergence of avian malaria in wild New Zealand avifauna. Here, we set to test the role of climatic drivers in synchronizing contacts between avian hosts and vectors, assess the temporal stability of transmission dynamics between years, and determine the role of introduced species in causing spill-over of this pathogen towards native species. Our study focused on three sites that were sampled regularly during two consecutive years in the austral summer, each site being adjacent to a breeding colony of Yellow-eyed penguins (Megadyptes antipodes). Our results reveal an overall temporal stability of avian malaria incidence patterns, with a decrease in infection throughout the austral summer for both sampled years. Moreover, we highlight a phylogenetic signal among sampled bird species, with introduced species being more heavily infected by avian malaria than their native counterparts. In contrast, we found no effect of the two climatic drivers investigated, temperature and rainfall, on mosquito abundance. Our results suggest a strong effect of alien species acting as reservoirs for diseases spilling-over towards immunologically naïve species, and provide conservation managers with a critical timeframe to control avian malaria breakouts.  相似文献   

10.
The Tasmanian devil, Sarcophilus harrisii, is the largest extant marsupial carnivore. In 1996, a debilitating facial tumor was reported. It is now clear that this is an invariably lethal infectious cancer. The disease has now spread across the majority of the range of the species and is likely to occur across the entire range within 5 to 10 years. The disease has lead to continuing declines of up to 90% and virtual disappearance of older age classes. Mark-recapture analysis and a preliminary epidemiological model developed for the population with the best longitudinal data both project local extinction in that area over a timeframe of 10 to 15 years from disease emergence. However, the prediction of extinction from the model is sensitive to the estimate of the latent period, which is poorly known. As transmission appears to occur by biting, much of which happens during sexual encounters, the dynamics of the disease may be typical of sexually transmitted diseases. This means that transmission is likely to be frequency-dependent with no threshold density for disease maintenance. Extinction over the entire current range of the devil is therefore a real possibility and an unacceptable risk.  相似文献   

11.
Understanding the conditions that favour the evolution and maintenance of antibiotic resistance is the central goal of epidemiology. A crucial feature explaining the adaptation to harsh, or 'sink', environments is the supply of beneficial mutations via migration from a 'source' population. Given that antibiotic resistance is frequently associated with antagonistic pleiotropic fitness costs, increased migration rate is predicted not only to increase the rate of resistance evolution but also to increase the probability of fixation of resistance mutations with minimal fitness costs. Here we report in vitro experiments using the nosocomial pathogenic bacterium Pseudomonas aeruginosa that support these predictions: increasing rate of migration into environments containing antibiotics increased the rate of resistance evolution and decreased the associated costs of resistance. Consistent with previous theoretical work, we found that resistance evolution arose more rapidly in the presence of a single antibiotic than two. Evolution of resistance was also more rapid when bacteria were subjected to sequential exposure with two antibiotics (cycling therapy) compared with simultaneous exposure (bi-therapy). Furthermore, pleiotropic fitness costs of resistance to two antibiotics were higher than for one antibiotic, and were also higher under bi-therapy than cycling therapy, although the cost of resistance depended on the order of the antibiotics through time. These results may be relevant to the clinical setting where immigration is known to be important between chemotherapeutically treated patients, and demonstrate the importance of ecological and evolutionary dynamics in the control of antibiotic resistance.  相似文献   

12.
    
Infectious disease ecology has recently raised its public profile beyond the scientific community due to the major threats that wildlife infections pose to biological conservation, animal welfare, human health and food security. As we start unravelling the full extent of emerging infectious diseases, there is an urgent need to facilitate multidisciplinary research in this area. Even though research in ecology has always had a strong theoretical component, cultural and technical hurdles often hamper direct collaboration between theoreticians and empiricists. Building upon our collective experience of multidisciplinary research and teaching in this area, we propose practical guidelines to help with effective integration among mathematical modelling, fieldwork and laboratory work. Modelling tools can be used at all steps of a field-based research programme, from the formulation of working hypotheses to field study design and data analysis. We illustrate our model-guided fieldwork framework with two case studies we have been conducting on wildlife infectious diseases: plague transmission in prairie dogs and lyssavirus dynamics in American and African bats. These demonstrate that mechanistic models, if properly integrated in research programmes, can provide a framework for holistic approaches to complex biological systems.  相似文献   

13.
Backward bifurcation is a relatively recent yet well-studied phenomenon associated with deterministic epidemic models. It allows for the presence of multiple subcritical endemic equilibria, and is generally found only in models possessing a reasonable degree of complexity. One particular aspect of backward bifurcation that appears to have been virtually overlooked in the literature is the potential influence its presence might have on the behaviour of any analogous stochastic model. Indeed, the primary aim of this paper is to investigate this possibility. Our approach is to compare the theoretical probabilities of extinction, calculated via a particular stochastic formulation of a deterministic model exhibiting backward bifurcation, with those obtained from a series of stochastic simulations. We have found some interesting links in the behaviour between the deterministic and stochastic models, and are able to offer plausible explanations for our observations.  相似文献   

14.
In the 1990s, liver transplantation for hepatitis B and C virus (HBV and HCV) related-liver diseases was a very controversial issue since recurrent infection of the graft was inevitable. Significant progress has been made in the prophylaxis and treatment of recurrent hepatitis B/C (or HBV/HCV infection) after liver transplantation. In this paper, we propose a mathematical model of ordinary differential equations describing the dynamics of the HBV/HCV and its interaction with both liver and blood cells. A single model is used to describe infection of either virus since the dynamics in-host (infected of the liver) are similar. Analyzing the model, we observe that the system shows either a transcritical or a backward bifurcation. Explicit conditions on the model parameters are given for the backward bifurcation to be present. Consequently, we investigate possible factors that are responsible for HBV/HCV infection and assess control strategies to reduce HBV/HCV reinfection and improve graft survival after liver transplantation.  相似文献   

15.
Swine populations are known to be an important source of new human strains of influenza A, including those responsible for global pandemics. Yet our knowledge of the epidemiology of influenza in swine is dismayingly poor, as highlighted by the emergence of the 2009 pandemic strain and the paucity of data describing its origins. Here, we analyse a unique dataset arising from surveillance of swine influenza at a Hong Kong abattoir from 1998 to 2010. We introduce a state–space model that estimates disease exposure histories by joint inference from multiple modes of surveillance, integrating both virological and serological data. We find that an observed decrease in virus isolation rates is not due to a reduction in the regional prevalence of influenza. Instead, a more likely explanation is increased infection of swine in production farms, creating greater immunity to disease early in life. Consistent with this, we find that the weekly risk of exposure on farms equals or exceeds the exposure risk during transport to slaughter. We discuss potential causes for these patterns, including competition between influenza strains and shifts in the Chinese pork industry, and suggest opportunities to improve knowledge and reduce prevalence of influenza in the region.  相似文献   

16.
17.
Many disease pathogens stimulate immunity in their hosts, which then wanes over time. To better understand the impact of this immunity on epidemiological dynamics, we propose an epidemic model structured according to immunity level that can be applied in many different settings. Under biologically realistic hypotheses, we find that immunity alone never creates a backward bifurcation of the disease-free steady state. This does not rule out the possibility of multiple stable equilibria, but we provide two sufficient conditions for the uniqueness of the endemic equilibrium, and show that these conditions ensure uniqueness in several common special cases. Our results indicate that the within-host dynamics of immunity can, in principle, have important consequences for population-level dynamics, but also suggest that this would require strong non-monotone effects in the immune response to infection. Neutralizing antibody titer data for measles are used to demonstrate the biological application of our theory.  相似文献   

18.
19.
The ubiquity and importance of parasite co-infections in populations of free-living animals is beginning to be recognized, but few studies have demonstrated differential fitness effects of single infection versus co-infection in free-living populations. We investigated interactions between the emerging bacterial disease bovine tuberculosis (BTB) and the previously existing viral disease Rift Valley fever (RVF) in a competent reservoir host, African buffalo, combining data from a natural outbreak of RVF in captive buffalo at a buffalo breeding facility in 2008 with data collected from a neighbouring free-living herd of African buffalo in Kruger National Park. RVF infection was twice as likely in individual BTB+ buffalo as in BTB− buffalo, which, according to a mathematical model, may increase RVF outbreak size at the population level. In addition, co-infection was associated with a far higher rate of fetal abortion than other infection states. Immune interactions between BTB and RVF may underlie both of these interactions, since animals with BTB had decreased innate immunity and increased pro-inflammatory immune responses. This study is one of the first to demonstrate how the consequences of emerging infections extend beyond direct effects on host health, potentially altering the dynamics and fitness effects of infectious diseases that had previously existed in the ecosystem on free-ranging wildlife populations.  相似文献   

20.
    
Emerging infectious diseases are rising globally and understanding host‐pathogen interactions during the initial stages of disease emergence is essential for assessing potential evolutionary dynamics and designing novel management strategies. Tasmanian devils (Sarcophilus harrisii) are endangered due to a transmissible cancer—devil facial tumour disease (DFTD)—that since its emergence in the 1990s, has affected most populations throughout Tasmania. Recent studies suggest that devils are adapting to the DFTD epidemic and that disease‐induced extinction is unlikely. However, in 2014, a second and independently evolved transmissible cancer—devil facial tumour 2 (DFT2)—was discovered at the d’Entrecasteaux peninsula, in south‐east Tasmania, suggesting that the species is prone to transmissible cancers. To date, there is little information about the distribution, epidemiology and effects of DFT2 and its interaction with DFTD. Here, we use data from monitoring surveys and roadkills found within and adjacent to the d’Entrecasteaux peninsula to determine the distribution of both cancers and to compare their epidemiological patterns. Since 2012, a total of 51 DFTD tumours have been confirmed among 26 individuals inside the peninsula and its surroundings, while 40 DFT2 tumours have been confirmed among 23 individuals, and two individuals co‐infected with both tumours. All devils with DFT2 were found within the d’Entrecasteaux peninsula, suggesting that this new transmissible cancer is geographically confined to this area. We found significant differences in tumour bodily location in DFTD and DFT2, with non‐facial tumours more commonly found in DFT2. There was a significant sex bias in DFT2, with most cases reported in males, suggesting that since DFT2 originated from a male host, females might be less susceptible to this cancer. We discuss the implications of our results for understanding the epidemiological and evolutionary interactions of these two contemporary transmissible cancers and evaluating the effectiveness of potential management strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号