首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The apparent synchronisation of spatially discrete populations is a well documented phenomenon. However, it is not clear what the governing mechanisms are for this synchrony, and whether they are robust over a range of environmental conditions and patch specific population dynamic behaviours. In this paper, we explore two (possibly interacting) modes of coupling, and investigate their theoretically discernible, and perhaps even experimentally measurable, signatures. To aid us in this investigation we employ a planktonic example system, with direct application to plankton patchiness. Furthermore, we address the role of chaos in complex spatio-temporal dynamics; we find that chaos associated with funnel attractors can play a distinguished role, over dynamics less sensitive to small variations, in being more susceptible to generalised synchronisation (such as phase synchronisation) in the presence of small local parameter variation. This is in contrast to the case for coupled systems with identical dynamics, and suggests that non-identically coupled systems are more vulnerable to global extinction events when exhibiting funnel-type chaotic dynamics.  相似文献   

2.
Masting, the synchronized and intermittent seed production by plant populations, provides highly variable food resources for specialist seed predators. Such a reproductive mode helps minimize seed losses through predator satiation and extinction of seed predator populations. The seed predators can buffer the resource variation through dispersal or extended diapause. We developed a spatially explicit resource-consumer model to understand the effect of masting on specialist seed predators. The masting dynamics were assumed to follow a resource-based model for plant reproduction, and the population dynamics of the predator were represented by a spatially extended Nicholson-Bailey model. The resultant model demonstrated that when host plants reproduce intermittently, seed predator populations go locally extinct, but global persistence of the predator is facilitated by dispersal or extended diapause. Global extinction of the predator resulted when the intermittent reproduction is highly synchronized among plants. An approximate invasion criterion for the predators showed that negative lag-1 autocorrelation in seeding reduces invasibility, and positive lag-1 cross-correlation enhances invasibility. Spatial synchronization in seeding at local scale caused by pollen coupling (or climate forcing) further prevented invasion of the predators. If the predators employed extended diapause, extremely high temporal variability in reproduction was required for plants to evade the predators.  相似文献   

3.
A null model for habitat patch selection in spatially heterogeneous environments is the ideal free distribution (IFD), which assumes individuals have complete knowledge about the environment and can freely disperse. Under equilibrium conditions, the IFD predicts that local population growth rates are zero in all occupied patches, sink patches are unoccupied, and the fraction of the population selecting a patch is proportional to the patch's carrying capacity. Individuals, however, often experience stochastic fluctuations in environmental conditions and cannot respond to these fluctuations instantaneously. An evolutionary stability analysis for fixed patch-selection strategies reveals that environmental uncertainty disrupts the classical IFD predictions: individuals playing the evolutionarily stable strategy may occupy sink patches, local growth rates are negative and typically unequal in all patches, and individuals prefer higher-quality patches less than predicted by their carrying capacities. Spatial correlations in environmental fluctuations can enhance or marginalize these trends. The analysis predicts that continually increasing environmental variation first selects for range expansion, then selects for persisting coupled sink populations, and ultimately leads to regional extinction. In contrast, continually increasing habitat degradation first selects for range contraction and may select for persisting coupled sink populations before regional extinction. These results highlight the combined roles of spatial and temporal heterogeneity on the evolution of habitat selection.  相似文献   

4.
This work explores an information-theoretic approach to drawing inferences about coupling of spatially extended ecological populations based solely on time-series of abundances. The efficacy of the approach, time-delayed mutual information, was explored using a spatially extended predator-prey model system in which populations at different patches were coupled via diffusive movement. The approach identified the relative magnitude and direction of information flow resulting from animal movement between populations, the change in information flow as a function of distance separating populations, and the diffusive nature of the information flow. In addition, when the diffusive movement was eliminated from the model, mutual information correctly provided no evidence of information flow, even when population synchrony was generated by a common environmental driving function. Thus, for this model system, time-delayed mutual information was useful in discriminating between the Moran effect and animal movement as causes of population synchrony, as well as in characterizing dispersal in terms of direction, relative speed and diffusive nature.  相似文献   

5.
局域种群的Allee效应和集合种群的同步性   总被引:3,自引:0,他引:3  
从包含Allee效应的局域种群出发,建立了耦合映像格子模型,即集合种群模型.通过分析和计算机模拟表明:(1)当局域种群受到Allee效应强度较大时,集合种群同步灭绝;(2)而当Allee效应强度相对较弱时,通过稳定局域种群动态(减少混沌)使得集合种群发生同步波动,而这种同步波动能够增加集合种群的灭绝风险;(3)斑块间的连接程度对集合种群同步波动的发生有很大的影响,适当的破碎化有利于集合种群的续存.全局迁移和Allee效应结合起来增加了集合种群同步波动的可能,从而增加集合种群的灭绝风险.这些结果对理解同步性的机理、利用同步机理来制定物种保护策略和害虫防治都有重要的意义.  相似文献   

6.
A number of important questions in ecology involve the possibility of interactions or "coupling" among potential components of ecological systems. The basic question of whether two components are coupled (exhibit dynamical interdependence) is relevant to investigations of movement of animals over space, population regulation, food webs and trophic interactions, and is also useful in the design of monitoring programs. For example, in spatially extended systems, coupling among populations in different locations implies the existence of redundant information in the system and the possibility of exploiting this redundancy in the development of spatial sampling designs. One approach to the identification of coupling involves study of the purported mechanisms linking system components. Another approach is based on time series of two potential components of the same system and, in previous ecological work, has relied on linear cross-correlation analysis. Here we present two different attractor-based approaches, continuity and mutual prediction, for determining the degree to which two population time series (e.g., at different spatial locations) are coupled. Both approaches are demonstrated on a one-dimensional predator-prey model system exhibiting complex dynamics. Of particular interest is the spatial asymmetry introduced into the model as linearly declining resource for the prey over the domain of the spatial coordinate. Results from these approaches are then compared to the more standard cross-correlation analysis. In contrast to cross-correlation, both continuity and mutual prediction are clearly able to discern the asymmetry in the flow of information through this system.  相似文献   

7.
In spatially heterogeneous landscapes, some habitats may be persistent sources, providing immigrants to sustain populations in unfavorable sink habitats (where extinction is inevitable without immigration). Recent theoretical and empirical studies of source-sink systems demonstrate that temporally variable local growth rates in sinks can substantially increase average abundance of a persisting population, provided that the variation is positively autocorrelated--in effect, temporal variation inflates average abundance. Here we extend these results to a metapopulation in which all habitat patches are sinks. Using numerical studies of a population with discrete generations (buttressed by analytic results), we show that temporal variation and moderate dispersal can jointly permit indefinite persistence of the metapopulation and that positive autocorrelation both lowers the magnitude of variation required for persistence and increases the average abundance of persisting metapopulations. These effects are weakened--but not destroyed--if variation in local growth rates is spatially synchronized and dispersal is localized. We show that the inflationary effect is robust to a number of extensions of the basic model, including demographic stochasticity and density dependence. Because ecological and environmental processes contributing to temporally variable growth rates in natural populations are typically autocorrelated, these observations may have important implications for species persistence.  相似文献   

8.
Transgenes may spread from crops into the environment via the establishment of feral populations, often initiated by seed spill from transport lorries or farm machinery. Locally, such populations are often subject to large environmental variability and usually do not persist longer than a few years. Because secondary feral populations may arise from seed dispersal to adjacent sites, the dynamics of such populations should be studied in a metapopulation context. We study a structured metapopulation model with local dispersal, mimicking a string of roadside subpopulations of a feral crop. Population growth is assumed to be subject to local disturbances, introducing spatially random environmental stochasticity. Our aim is to understand the role of dispersal and environmental variability in the dynamics of such ephemeral populations. We determine the effect of dispersal on the extinction boundary and on the distribution of persistence times, and investigate the influence of spatially correlated disturbances as opposed to spatially random disturbances. We find that, given spatially random disturbances, dispersal slows down the decline of the metapopulation and results in the occurrence of long-lasting local populations which remain more or less static in space. We identify which life history traits, if changed by genetic modification, have the largest impact on the population growth rate and persistence times. For oilseed rape, these are seed bank survival and dormancy. Combining our findings with literature data on transgene-induced life history changes, we predict that persistence is promoted by transgenes for oil-modifications (high stearate or high laurate) and, possibly, for insect resistence (Bt). Transgenic tolerance to glufosinate herbicide is predicted to reduce persistence.  相似文献   

9.
刘志广  张丰盘 《生态学报》2016,36(2):360-368
随着种群动态和空间结构研究兴趣的增加,激发了大量的有关空间同步性的理论和实验的研究工作。空间种群的同步波动现象在自然界广泛存在,它的影响和原因引起了很多生态学家的兴趣。Moran定理是一个非常重要的解释。但以往的研究大多假设环境变化为空间相关的白噪音。越来越多的研究表明很多环境变化的时间序列具有正的时间自相关性,也就是说用红噪音来描述更加合理。因此,推广经典的Moran效应来处理空间相关红噪音的情形很有必要。利用线性的二阶自回归过程的种群模型,推导了两种群空间同步性与种群动态异质性和环境变化的时间相关性(即环境噪音的颜色)之间的关系。深入分析了种群异质性和噪音颜色对空间同步性的影响。结果表明种群动态异质性不利于空间同步性,但详细的关系比较复杂。而红色噪音的同步能力体现在两方面:一方面,本身的相关性对同步性有贡献;另一方面,环境变化时间相关性可以通过改变种群密度依赖来影响同步性,但对同步性的影响并无一致性的结论,依赖于种群的平均动态等因素。这些结果对理解同步性的机理、利用同步机理来制定物种保护策略和害虫防治都有重要的意义。  相似文献   

10.
Much of the work on extinction events has focused on external perturbations of ecosystems, such as climatic change, or anthropogenic factors. Extinction, however, can also be driven by endogenous factors, such as the ecological interactions between species in an ecosystem. Here we show that endogenously driven extinction events can have a scale-free distribution in simple spatially structured host-parasitoid systems. Due to the properties of this distribution there may be many such simple ecosystems that, although not strictly permanent, persist for arbitrarily long periods of time. We identify a critical phase transition in the parameter space of the host-parasitoid systems, and explain how this is related to the scale-free nature of the extinction process. Based on these results, we conjecture that scale-free extinction processes and critical phase transitions of the type we have found may be a characteristic feature of many spatially structured, multi-species ecosystems in nature. The necessary ingredient appears to be competition between species where the locally inferior type disperses faster in space. If this condition is satisfied then the eventual outcome depends subtly on the strength of local superiority of one species versus the dispersal rate of the other.  相似文献   

11.
Generic early-warning signals such as increased autocorrelation and variance have been demonstrated in time-series of systems with alternative stable states approaching a critical transition. However, lag times for the detection of such leading indicators are typically long. Here, we show that increased spatial correlation may serve as a more powerful early-warning signal in systems consisting of many coupled units. We first show why from the universal phenomenon of critical slowing down, spatial correlation should be expected to increase in the vicinity of bifurcations. Subsequently, we explore the applicability of this idea in spatially explicit ecosystem models that can have alternative attractors. The analysis reveals that as a control parameter slowly pushes the system towards the threshold, spatial correlation between neighboring cells tends to increase well before the transition. We show that such increase in spatial correlation represents a better early-warning signal than indicators derived from time-series provided that there is sufficient spatial heterogeneity and connectivity in the system.  相似文献   

12.
Persistence and extinction are fundamental processes in ecological systems that are difficult to accurately measure due to stochasticity and incomplete observation. Moreover, these processes operate on multiple scales, from individual populations to metapopulations. Here, we examine an extensive new data set of measles case reports and associated demographics in pre‐vaccine era US cities, alongside a classic England & Wales data set. We first infer the per‐population quasi‐continuous distribution of log incidence. We then use stochastic, spatially implicit metapopulation models to explore the frequency of rescue events and apparent extinctions. We show that, unlike critical community size, the inferred distributions account for observational processes, allowing direct comparisons between metapopulations. The inferred distributions scale with population size. We use these scalings to estimate extinction boundary probabilities. We compare these predictions with measurements in individual populations and random aggregates of populations, highlighting the importance of medium‐sized populations in metapopulation persistence.  相似文献   

13.
Population dynamics in spatially extended systems can be modeled by Coupled Map Lattices (CML). We employ such equations to study the behavior of populations confined to a finite patch surrounded by a completely hostile environment. By means of the Galerkin projection and the normal solution ansatz, we are able to find analytical expressions for the critical patch size and show the existence of chaotic patterns. The analytical solutions provided are shown to fit, under the appropriate approximations, the dynamics of a logistic map. This interesting result, together with our discussion, suggests the existence of a universal class of spatially extended systems directly linked to the well-known characteristics of the logistic map.  相似文献   

14.
Many flowering plants rely on pollinators, self-fertilization, or both for reproduction. We model the consequences of these features for plant population dynamics and mating system evolution. Our mating systems-based population dynamics model includes an Allee effect. This often leads to an extinction threshold, defined as a density below which population densities decrease. Reliance on generalist pollinators who primarily visit higher density plant species increases the extinction threshold, whereas autonomous modes of selfing decrease and can eliminate the threshold. Generalist pollinators visiting higher density plant species coupled with autonomous selfing may introduce an effect where populations decreasing in density below the extinction threshold may nonetheless persist through selfing. The extinction threshold and selfing at low density result in populations where individuals adopting a single reproductive strategy exhibit mating systems that depend on population density. The ecological and evolutionary analyses provide a mechanism where prior selfing evolves even though inbreeding depression is greater than one-half. Simultaneous consideration of ecological and evolutionary dynamics confirms unusual features (e.g., evolution into extinction or abrupt increases in population density) implicit in our separate consideration of ecological and evolutionary scenarios. Our analysis has consequences for understanding pollen limitation, reproductive assurance, and the evolution of mating systems.  相似文献   

15.
Alexandre Robert 《Oikos》2009,118(10):1590-1600
All natural populations are confronted with the temporal variability of their environment, and most of them occur in fragmented habitats. I use spatially explicit modeling to examine the interactive effects of habitat configuration, habitat deterioration and spatially correlated environmental perturbations on the viability of fragmented populations. When considering a fixed amount of habitat, viability is maximized for an intermediate (optimal) density of habitat patches, allowing effective dispersal without strong environmental correlation among patches. Starting from this optimal density, I show that the scale of habitat change (density reduction vs range contraction) interacts with the direction of change (reduction vs improvement of habitat availability). An improvement in habitat availability is always more beneficial if occurring through an increase of the species range, while a reduction in habitat availability is always more critical if occurring through a reduction of patch density (even in the presence of environmental correlation). In the context of the 'single large or several small' debate in reserve design, results indicate that a large number of small patches may be optimal to long-term species persistence if the species range increases with the number of patches.  相似文献   

16.
A general rule of thumb for biological conservation obtained from simple models of hypothetical species is that for populations with strong environmental noise moderate increases in habitat size or quality do not substantially reduce extinction risk. However, whether this rule also holds for real species with complex behavior, such as social species with breeding units and reproductive suppression, is uncertain. Here we present a population viability analysis of the alpine marmot Marmota marmota, which displays marked social behavior, i.e. it lives in social groups of up to twenty individuals. Our analysis is based on a long‐term field study carried out in the Bavarian Alps since 1982. During the first fifteen years of this study, 687 marmots were individually marked and the movements and fate of 98 dispersing marmots were recorded with radio‐telemetry. Thus, in contrast to most other viability analyses of spatially structured populations, good data about dispersal exist. A model was constructed which is individual‐based, spatially explicit at the scale of clusters of neighbouring territories, and spatially implicit at larger scales. The decisive aspect of marmot life history, winter mortality, is described by logistic regression where mortality is increased by age and the severity of winter, and decreased by the number of subdominant individuals present in a group. Model predictions of group size distribution are in good agreement with the results of the field study. The model shows that the effect of sociality on winter mortality is very effective in buffering environmental harshness and fluctuations. This underpins theoretical results stating that the appropriate measure of the strength of environmental noise is the ratio between the variance of population growth rate and the intrinsic rate of increase. The lessons from our study for biological conservation are that simple, unstructured models may not be sufficient to assess the viability of species with complex behavioral traits, and that even moderate increases in habitat capacity may substantially reduce extinction risk even if environmental fluctuations seem high.  相似文献   

17.
All species' ranges are the result of successful past invasions. Thus, models of species' invasions and their failure can provide insight into the formation of a species' geographic range. Here, we study the properties of invasion models when a species cannot persist below a critical population density known as an "Allee threshold." In both spatially continuous reaction-diffusion models and spatially discrete coupled ordinary-differential-equation models, the Allee effect can cause an invasion to fail. In patchy landscapes (with dynamics described by the spatially discrete model), range limits caused by propagation failure (pinning) are stable over a wide range of parameters, whereas, in an uninterrupted habitat (with dynamics described by a spatially continuous model), the zero velocity solution is structurally unstable and thus unlikely to persist in nature. We derive conditions under which invasion waves are pinned in the discrete space model and discuss their implications for spatially complex dynamics, including critical phenomena, in ecological landscapes. Our results suggest caution when interpreting abrupt range limits as stemming either from competition between species or a hard environmental limit that cannot be crossed: under a wide range of plausible ecological conditions, species' ranges may be limited by an Allee effect. Several example systems appear to fit our general model.  相似文献   

18.
Understanding the dynamics of socio‐ecological systems is crucial to the development of environmentally sustainable practices. Models of social or ecological sub‐systems have greatly enhanced such understanding, but at the risk of obscuring important feedbacks and emergent effects. Integrated modelling approaches have the potential to address this shortcoming by explicitly representing linked socio‐ecological dynamics. We developed a socio‐ecological system model by coupling an existing agent‐based model of land‐use dynamics and an individual‐based model of demography and dispersal. A hypothetical case‐study was established to simulate the interaction of crops and their pollinators in a changing agricultural landscape, initialised from a spatially random distribution of natural assets. The bi‐directional coupled model predicted larger changes in crop yield and pollinator populations than a unidirectional uncoupled version. The spatial properties of the system also differed, the coupled version revealing the emergence of spatial land‐use clusters that neither supported nor required pollinators. These findings suggest that important dynamics may be missed by uncoupled modelling approaches, but that these can be captured through the combination of currently‐available, compatible model frameworks. Such model integrations are required to further fundamental understanding of socio‐ecological dynamics and thus improve management of socio‐ecological systems.  相似文献   

19.
Regime shifts are abrupt transitions between alternate ecosystem states including desertification in arid regions due to drought or overgrazing. Regime shifts may be preceded by statistical anomalies such as increased autocorrelation, indicating declining resilience and warning of an impending shift. Tests for conditional heteroskedasticity, a type of clustered variance, have proven powerful leading indicators for regime shifts in time series data, but an analogous indicator for spatial data has not been evaluated. A spatial analog for conditional heteroskedasticity might be especially useful in arid environments where spatial interactions are critical in structuring ecosystem pattern and process. We tested the efficacy of a test for spatial heteroskedasticity as a leading indicator of regime shifts with simulated data from spatially extended vegetation models with regular and scale‐free patterning. These models simulate shifts from extensive vegetative cover to bare, desert‐like conditions. The magnitude of spatial heteroskedasticity increased consistently as the modeled systems approached a regime shift from vegetated to desert state. Relative spatial autocorrelation, spatial heteroskedasticity increased earlier and more consistently. We conclude that tests for spatial heteroskedasticity can contribute to the growing toolbox of early warning indicators for regime shifts analyzed with spatially explicit data.  相似文献   

20.
Global temperatures are expected to rise between 1.1 and 6.4°C over the next 100 years, although the exact rate will depend on future greenhouse emissions, and will vary spatially. Temperature can alter an individual's metabolic rate, and consequently birth and death rates. In declining populations, these alterations may manifest as changes in the rate of that population's decline, and subsequently the timing of extinction events. Predicting such events could therefore be of considerable use. We use a small‐scale experimental system to investigate how the rate of temperature change can alter a population's time to extinction, and whether it is possible to predict this event using a simple phenomenological model that incorporates information about population dynamics at a constant temperature, published scaling of metabolic rates, and temperature. In addition, we examine 1) the relative importance of the direct effects of temperature on metabolic rate, and the indirect effects (via temperature driven changes in body size), on predictive accuracy (defined as the proximity of the predicted date of extinction to the mean observed date of extinction), 2) the combinations of model parameters that maximise accuracy of predictions, and 3) whether substituting temperature change through time with mean temperature produces accurate predictions. We find that extinction occurs earlier in environments that warm faster, and this can be accurately predicted (R2 > 0.84). Increasing the number of parameters that were temperature‐dependent increased the model's accuracy, as did scaling these temperature‐dependent parameters with either the direct effects of temperature alone, or with the direct and indirect effects. Using mean temperature through time instead of actual temperature produces less accurate predictions of extinction. These results suggest that simple phenomenological models, incorporating metabolic theory, may be useful in understanding how environmental change can alter a population's rate of extinction. Synthesis Understanding how populations will respond to future climatic change is a key goal in ecology, however the exact rate of future warming will vary both spatially and temporally. Consequently, mathematical models must be used to understand the potential range of future population dynamics under various warming scenarios. We use a combination of experimentation and modelling to show that the effects of varying rates of environmental change on population dynamics can be predicted by a simple model. However, the accuracy of these predictions depends upon, amongst other things, a detailed knowledge of how temperature will change over time, rather than approximating this change to mean temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号