首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Calphostin-C with perylenequinone structure is known to bind the regulatory domain of protein kinase C (PKC) and to inhibit kinase activity in vitro in a light-dependent fashion. We have found that calphostin-C induces substantial serine and threonine phosphorylation of the epidermal growth factor (EGF) receptor in a light-dependent fashion in the EGF receptor-hyperproducing squamous carcinoma cell line NA. Tryptic phospho-peptide mapping and phospho-amino acid analysis revealed that calphostin-C–-enhanced phosphorylation was on threonine 669, serine 671, serine 1046/1047, and serine 1166. However, caiphostin-C did not inhibit phosphorylation of the 80 K protein, a cytosolic major substrate of PKC (MARCKS). Staurosporine, a potent PKC inhibitor with affinity for the catalytic domain of PKC, inhibited phosphorylation of the 80 K protein and 12-O-tetradecanoyl-13-phorbol acetate induction of EGF receptor phosphorylation but did not inhibit the calphostin-C induction of the EGF receptor phosphorylation. These results suggest that the target of calphostin-C in vivo is different from that of staurosporine and thus calphostin-C in vivo does not inhibit PKC. Furthermore, calphostin-C enhanced the internalization of phosphorylated EGF receptor. Thus, calphostin-C apparently activates a novel signal transduction pathway which involves phosphorylation and internalization of the EGF receptor via light-dependent mechanism. © 1994 Wiley-Liss, Inc.  相似文献   

2.
Human breast epithelial HBL100 cells, which bind both epidermal growth factor (EGF) and glucocorticoids, were labelled to steady state specific activity with 32Pi and the glucocorticoid receptor was immunoprecipitated from cell lysates with polyclonal antiserum GR884. Immunoprecipitated receptor was resolved by NaDodSO4-polyacrylamide gel electrophoresis and identified by autoradiography. Immunoprecipitated receptor also was characterized by western blot analysis and affinity labelling with [3H]dexamethasone-21-mesylate. Phosphoamino acid analysis of 32P-glucocorticoid receptor revealed 89% phosphoserine and 11% phosphotyrosine. Treatment of steady state 32Pi-labelled cells with EGF stimulated total and alkali-stable phosphorylation in the 97 kDa receptor band by about 35%. Prior incubation with dexamethasone inhibited EGF stimulated, alkali-stable phosphorylation of the 97 kDa glucocorticoid receptor band.  相似文献   

3.
The number of surface EGF receptors as well as their internalization rate and biosynthesis were analyzed in hepatocytes freshly isolated from control, streptozotocin-diabetic, and insulin-treated diabetic rats. All three parameters were decreased in diabetic animals and values were corrected by insulin treatment. Moreover, the inhibition of synthesis was specific for the EGF receptor since the other biosynthetically labeled proteins were not affected. These data demonstrate that the reduced number of hepatocyte surface EGF receptors results from an inhibition of EGF-receptor synthesis which is not compensated by a reduced internalization rate.  相似文献   

4.
《The Journal of cell biology》1989,109(6):2751-2760
The association of EGF with its receptor in endosomes isolated from rat liver homogenates was assessed biochemically by polyethylene glycol precipitation and morphologically by electron microscope radioautography. The proportion of receptor-bound ligand in endosomes at 15 min after the injection of doses of 0.1 and 1 microgram EGF/100 g body weight was 57%. This value increased to 77% for the dose of 10 micrograms EGF injected. Quantitative electron microscope radioautography carried out on endosomes isolated at 15 min after the injection of 10 micrograms 125I-EGF demonstrated that most radiolabel was over the endosomal periphery thereby indicating that ligand- receptor complexes were in the bounding membrane but not in intraluminal vesicles of the content. EGF receptor autophosphorylation activity during internalization was evaluated in plasmalemma and endosome fractions. This activity was markedly but transiently reduced on the cell surface shortly after the administration of saturating doses of EGF. The same activity, however, was augmented and prolonged in endosomes for up to 30 min after EGF injection. The transient desensitization of cell surface activity was not due to prior in vivo phosphorylation since receptor dephosphorylation in vitro failed to restore autophosphorylation activity. Transient desensitization of cell surface autophosphorylation activity coincided with a diminished capacity for endocytosis of 125I-EGF with endocytosis returning to normal after the restoration of cell surface autophosphorylation activity. The inhibition of cell surface autophosphorylation activity and the activation of endosomal autophosphorylation activity coincident with downregulation suggest that EGF receptor traffic is governed by ligand-regulated phosphorylation activity.  相似文献   

5.
The question whether epidermal growth factor (EGF)-induced receptor endocytosis requires the prior autophosphorylation via the EGF receptor (EGFR) kinase domain has been a matter of long-standing debate. In the airway epithelial cell line NCI-H292, the EGFR kinase domain inhibitor BIBW 2948 BS was found to inhibit both autophosphorylation and subsequent internalization of the endogenous EGFR with similar IC50 values. Applying an ex vivo EGFR internalization assay in a clinical study, the in vivo effect of inhalatively administered BIBW 2948 BS was determined directly at the targeted receptor in airway tissues from COPD patients. In these experiments, the in vivo inhibition of the EGFR kinase domain prevented the EGF-induced internalization of EGFR.  相似文献   

6.
Caveolin-1 is the major coat protein of caveolae and has been reported to interact with various intracellular signaling molecules including the epidermal growth factor (EGF) receptor. To investigate the involvement of caveolin-1 in EGF receptor action, we used mouse B82L fibroblasts transfected with (a) wild type EGF receptor, (b) a C-terminally truncated EGF receptor at residue 1022, (c) a C-terminally truncated EGF receptor at residue 973, or (d) a kinase-inactive EGF receptor (K721M). Following EGF treatment, there was a distinct electrophoretic mobility shift of the caveolin-1 present in cells expressing the truncated forms of the EGF receptor, but this shift was not detectable in cells bearing either normal levels of the wild type EGF receptor or a kinase-inactive receptor. This mobility shift was also not observed following the addition of other cell stimuli, such as platelet-derived growth factor, insulin, basic fibroblast growth factor, or phorbol 12-myristate 13-acetate. Analysis of caveolin-1 immunoprecipitates from EGF-stimulated or nonstimulated cells demonstrated that the EGF-induced mobility shift of caveolin-1 was associated with its tyrosine phosphorylation in cells expressing truncated EGF receptors. Maximal caveolin-1 phosphorylation was achieved within 5 min after exposure to 10 nM EGF and remained elevated for at least 2 h. Additionally, several distinct phosphotyrosine-containing proteins (60, 45, 29, 24, and 20 kDa) were co-immunoprecipitated with caveolin-1 in an EGF-dependent manner. Furthermore, the Src family kinase inhibitor, PP1, does not affect autophosphorylation of the receptor, but it does inhibit the EGF-induced mobility shift and phosphorylation of caveolin-1. Conversely, the MEK inhibitors PD98059 and UO126 could attenuate EGF-induced mitogen-activated protein kinase activation, they do not affect the EGF-induced mobility shift of caveolin-1. Because truncation and overexpression of the EGF receptor have been linked to cell transformation, these results provide the first evidence that the tyrosine phosphorylation of caveolin-1 occurs via an EGF-sensitive signaling pathway that can be potentiated by an aberrant activity or expression of various forms of the EGF receptor.  相似文献   

7.
Epidermal growth factor (EGF) stimulates EGF receptor synthesis   总被引:13,自引:0,他引:13  
Epidermal growth factor (EGF) binds to the extracellular domain of a specific 170,000-dalton transmembrane glycoprotein; this results in rapid removal of both ligand and receptor from the cell surface. In WB cells, a rat hepatic epithelial cell line, ligand-directed receptor internalization leads to receptor degradation. We tested whether the EGF receptor was replenished at a constitutive or enhanced rate following EGF binding by immunoprecipitating biosynthetically labeled EGF receptor from cells cultured with [35S]methionine. EGF stimulated receptor synthesis within 2 h in a dose-dependent manner; this was particularly evident when examining the nascent form of the receptor. To determine the site of EGF action, total WB cell RNA was transferred to nitrocellulose paper after electrophoresis and was hybridized to cDNA probes from both the external and cytoplasmic coding regions of the human EGF receptor. EGF increased receptor mRNA by 3-5-fold. Therefore, at least in some cells, the surface action of EGF that leads to EGF receptor degradation is counterbalanced by a positive effect on receptor synthesis.  相似文献   

8.
Eukaryotic initiation factor 4F, a multi-protein mRNA cap binding complex, was isolated by m7GTP-Sepharose affinity chromatography from human mammary epithelial cells (184A1N4) incubated with [32P] orthophosphate. Treatment of cells with epidermal growth factor resulted in enhanced phosphorylation of both p28 (eIF-4E) and p220 subunits. The identities of the p28 and p220 subunits were confirmed by immunoprecipitation. The phosphorylation was both rapid and sustained in duration; p28 attained maximal levels (2-3-fold) within 30 min of treatment and remained elevated for at least 2 h, while p220 reached one-half maximal levels by 30 min, and maximal levels (3-4-fold) by 2 h of treatment. Two phosphorylated isoforms of p28 and multiple phosphorylated forms of p220 were detected by two-dimensional isoelectric focusing/sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Phosphoamino acid analysis of 6 N HCl hydrolyzates of p28 and p220 isolated from epidermal growth factor-treated and control cells indicated that serine is the predominant phosphorylated amino acid in both instances. In no case was phosphotyrosine observed. Pretreatment of cells with 1 microM okadaic acid resulted in the hyperphosphorylation of both p28 and p220 subunits. These results suggest that mitogenic growth factors and cellular serine/threonine phosphatases (pp1 and/or pp2A) serve essential roles in regulating phosphorylation levels of eukaryotic initiation factor 4F and support the concept that translational control is a component of the signal transduction mechanisms involved in growth regulation.  相似文献   

9.
To study the activity of the epidermal growth factor (EGF) receptor during EGF-directed internalization, liver epithelial cells were exposed to EGF at 37 degrees C for various periods of time, washed, and homogenized at 0 degrees C. EGF receptor autophosphorylation was assessed in homogenates using [gamma-32P]ATP. Autophosphorylation was stimulated 3- to 6-fold in homogenates of cells incubated with EGF (100 ng/ml) for 15 min but was at or below basal levels in homogenates of cells treated with EGF for 2.5-5 min. This was surprising because immunoblotting revealed that EGF receptor phosphotyrosine (P-Tyr) content in intact cells was near maximal from 30 s to 5 min after EGF treatment. Excess EGF (1 microgram/ml), added after homogenization but prior to the assay, increased autophosphorylation in homogenates of cells that had not been treated with EGF, but failed to increase activity in homogenates of cells treated with EGF in culture for 2.5-5 min. Suppression of tyrosine phosphorylation of an exogenous kinase substrate was also observed at times paralleling the suppression of EGF receptor autophosphorylation. The transient suppression of receptor autophosphorylation in the cell-free assay was not explained by persistent occupation of autophosphorylation sites by phosphate added in the intact cells. The sites were greater than 80% dephosphorylated during the homogenization. Additionally phosphatase inhibition that prevented the normal loss of EGF receptor P-Tyr in intact cells at 15 min did not affect the pattern of early (2.5-5 min) suppression and later (15 min) stimulation of autophosphorylation measured in the cell-free assay. The suppression was not explained by activation of protein kinase C in that depletion of greater than 95% of cellular protein kinase C activity by an 18-h incubation of cells with 10 microM 12-O-tetradecanoylphorbol 13-acetate (TPA) did not affect the early suppression of autophosphorylation in EGF-treated cells. Moreover, under the conditions tested, activation of protein kinase C by short-term treatment (0.5-10 min) with TPA or angiotensin II did not appreciably alter subsequent autophosphorylation in the cell-free assay. In contrast, a 30 degrees C preincubation of homogenates from cells with suppressed EGF receptor autophosphorylation led to the recovery of the ability of EGF to stimulate EGF receptor autophosphorylation. These results suggest that a rapid reversible protein kinase C-independent process prevents detection of EGF receptor kinase activity during an early phase of EGF-dependent receptor internalization.  相似文献   

10.
Epidermal growth factor (EGF) has previously been shown to stimulate gluconeogenesis in rat liver by decreasing the activity of pyruvate kinase [(1988) Biochem. J. 255, 361-364]. Here we investigate the mechanism underlying the inactivation of the enzyme. EGF was found to increase the incorporation of phosphate into pyruvate kinase, with maximal phosphorylation achieved only after 10 min in the presence of the growth factor. The increase in phosphorylation was not additive with that caused by cyclic AMP. Phosphoamino acid analysis of pyruvate kinase isolated from cells treated with EGF indicated that EGF increases phosphorylation solely on serine residues. The exact site of EGF-mediated phosphorylation has yet to be identified.  相似文献   

11.
We have investigated the epidermal growth factor (EGF)-stimulated tyrosine-specific protein kinase activity in quiescent cultures of diploid human fibroblasts that have a well characterized mitogenic response to EGF. We developed a method of permeabilizing cells with digitonin or other agents that permitted the rapid labeling of cellular proteins with exogenously added [gamma-32P]ATP while allowing only about 25% of marker cytosolic enzymes to escape from the cells. When phosphatases were inhibited with zinc and vanadate, EGF induced up to 8-fold stimulation of the incorporation of radioactivity from [gamma-32P]ATP into a 35-kDa band on sodium dodecyl sulfate gels. Alkali treatment of gels showed that EGF stimulated the phosphorylation of bands with apparent molecular masses of 170, 45, 35, 26, 22, and 21 kDa. Phosphoamino acid analysis was performed on the 170- and 35-kDa bands and revealed that the EGF-stimulated phosphorylation was on tyrosyl residues. The 35-kDa band was resolved into four spots by two-dimensional gel electrophoresis. The most acidic form was the most prominent and it was precipitated by an antiserum against a 35-kDa protein from A-431 cells; heretofore, this protein has only been reported to be phosphorylated in an EGF-dependent manner by A-431 membranes in vitro (Fava, R. A., and Cohen, S. (1984) J. Biol. Chem. 259, 2636-2645). This antiserum also precipitated a 35-kDa phospho-protein from extracts of intact [32P]orthophosphate-labeled fibroblasts which was phosphorylated on tyrosine in an EGF-dependent manner. None of the forms of the 35-kDa phosphoproteins labeled in permeabilized cells were immunologically related to the 34-kDa protein that is a substrate for the tyrosyl kinase encoded by Rous sarcoma virus. Other mitogens (serum, insulin, platelet-derived growth factor, and thrombin) did not detectably stimulate phosphorylation in permeabilized cells.  相似文献   

12.
13.
Raf-1 serine- and threonine-specific protein kinase is transiently activated in cells expressing the epidermal growth factor (EGF) receptor upon treatment with EGF. The stimulated EGF receptor coimmunoprecipitates with Raf-1 kinase and mediates protein kinase C-independent phosphorylation of Raf-1 on serine residues. Hyperphosphorylated Raf-1 has lower mobility on sodium dodecyl sulfate gels and has sixfold-increased activity in immunocomplex kinase assay with histone H1 or Raf-1 sequence-derived peptide as a substrate. Raf-1 activation requires kinase-active EGF receptor; a point mutant lacking tyrosine kinase activity in inactive in Raf-1 coupling and association. It is noteworthy that tyrosine phosphorylation of c-Raf-1 induced by EGF was not detected in these cells. These observations suggest that Raf-1 kinase may act as an important downstream effector of EGF signal transduction.  相似文献   

14.
Previously we demonstrated that insulin-like growth factor-I mediates the sustained phosphorylation of Akt, which is essential for long term survival and protection of glial progenitors from glutamate toxicity. These prosurvival effects correlated with prolonged activation and stability of the insulin-like growth factor type-I receptor. In the present study, we investigated the mechanisms whereby insulin-like growth factor-I signaling, through the insulin-like growth factor type-I receptor, mediates the sustained phosphorylation of Akt. We showed that insulin-like growth factor-I stimulation induced loss of receptors from the cell surface but that surface receptors recovered over time. Blocking receptor internalization inhibited Akt phosphorylation, whereas inhibition of receptor trafficking blocked receptor recovery at the cell surface and the sustained phosphorylation of Akt. Moreover the insulin-like growth factor type-I receptor localized with the transferrin receptor and Rab11-positive endosomes in a ligand-dependent manner, further supporting the conclusion that this receptor follows a recycling pathway. Our results provide evidence that ligand stimulation leads to internalization of the insulin-like growth factor type-I receptor, which mediates Akt phosphorylation, and that receptor recycling sustains Akt phosphorylation in glial progenitors. Mathematical modeling of receptor trafficking further supports these results and predicts an additional kinetic state of the receptor consistent with sustained Akt phosphorylation.  相似文献   

15.
Epidermal growth factor receptor signaling   总被引:5,自引:0,他引:5  
  相似文献   

16.
Epidermal growth factor (EGF) is a Mr 6045 polypeptide first characterized for its ability to stimulate mitogenesis in epidermal and epithelial cells. The first step in the action of the growth factor is its binding to specific, high affinity membrane receptors. These receptors have been studied in a number of tissues and cell culture lines. The level of EGF receptors is modulated by many agents. EGF down-regulates its receptor. In addition, the number of EGF receptors is decreased by other growth factors (platelet-derived growth factor; transforming growth factor), by many tumor promoters and by viral transformation. Several hormones also can regulate EGF binding in its target tissues.  相似文献   

17.
We have demonstrated previously that the human picornavirus Echovirus 1 (EV1) triggers an infectious internalization pathway that follows closely, but seems to stay separate, from the epidermal growth factor receptor (EGFR) pathway triggered by epidermal growth factor (EGF). Here, we confirmed by using live and confocal microscopy that EGFR and EV1 vesicles are following intimately each other but are distinct entities with different degradation kinetics. We show here that despite being sorted to different pathways and located in distinct endosomes, EV1 inhibits EGFR downregulation. Simultaneous treatment with EV1 and EGF led to an accumulation of EGFR in cytoplasmic endosomes, which was evident already 15 min p.i. and more pronounced after 2 hr p.i. EV1 treatment led to reduced downregulation, which was proven by increased total cellular amount of EGFR. Confocal microscopy studies revealed that EGFR accumulated in large endosomes, presumably macropinosomes, which were not positive for markers of the early, recycling, or late endosomes/lysosomes. Interestingly, EV1 did not have a similar blocking effect on bulk endosomal trafficking or transferrin recycling along the clathrin pathway suggesting that EV1 did not have a general effect on cellular trafficking pathways. Importantly, EGF treatment increased EV1 infection and increased cell viability during infection. Simultaneous EV1 and EGF treatment seemed to moderately enhance phosphorylation of protein kinase C α. Furthermore, similar phenotype of EGFR trafficking could be produced by phorbol 12‐myristate 13‐acetate treatment, further suggesting that activated protein kinase C α could be contributing to EGFR phenotype. These results altogether demonstrate that EV1 specifically affects EGFR trafficking, leading to EGFR downregulation, which is beneficial to EV1 infection.  相似文献   

18.
The serine/threonine kinase RAF-1 is phosphorylated in intact macrophages in response to CSF-1 at 37 degrees C The augmented phosphorylation of RAF-1 and a concomitant increase in RAF-1 associated serine/threonine kinase activity are kinetically later events than CSF-1 induced protein tyrosine phosphorylation. Furthermore, phosphoamino acid analysis of RAF-1 reveals the presence of phosphoserine, trace amounts of phosphothreonine but no phosphotyrosine and the phosphorylated RAF-1 does not react with anti-phosphotyrosine antibodies. In contrast to CSF-1 induced protein tyrosine phosphorylation, RAF-1 phosphorylation and activation are temperature dependent and do not occur at 4 degrees C. Furthermore, coprecipitation experiments failed to reveal any noncovalent association of RAF-1 with the CSF-1 receptor. Thus, while RAF-1 is not a direct substrate for the CSF-1 receptor tyrosine kinase in vivo, its temperature dependent phosphorylation and activation represent an intriguing aspect of the CSF-1 response.  相似文献   

19.
Cross-communication between heterologous signaling systems and the epidermal growth factor receptor (EGFR) has been shown to be critical for a variety of biological responses: EGFR transactivation when G-protein-coupled receptors (GPCRs) are stimulated represents the paradigm of an interreceptor network that is dependent on G-proteins, kinases, metalloproteases, and growth factor precursors. Investigating the mechanism of this process will help expand our knowledge of physiological regulatory mechanisms and diverse pathophysiological disorders.  相似文献   

20.
Cbl proteins have been implicated in the regulation of endocytic trafficking of epidermal growth factor receptor. However, the precise role of Cbl in epidermal growth factor receptor endocytosis is not defined. To directly visualize Cbl in cells and perform structure-function analysis of Cbl's role in epidermal growth factor receptor internalization, a yellow fluorescent protein-fusion of c-Cbl was constructed. Upon epidermal growth factor receptor activation, Cbl-yellow fluorescent protein moved with epidermal growth factor receptor to clathrin-coated pits and endosomes. Localization of Cbl-yellow fluorescent protein to these endocytic organelles was dependent on a proline-rich domain of c-Cbl that interacts with Grb2 as shown by fluorescence resonance energy transfer microscopy. In contrast, direct binding of Cbl to phosphotyrosine 1045 of the epidermal growth factor receptor was required for epidermal growth factor receptor polyubiquitination, but was not essential for Cbl-yellow fluorescent protein localization in epidermal growth factor receptor-containing compartments. These data suggest that the binding of Cbl to epidermal growth factor receptor through Grb2 is necessary and sufficient for Cbl function during clathrin-mediated endocytosis. Overexpression of c-Cbl mutants that are capable of Grb2 binding but defective in linker/RING finger domain function severely inhibited epidermal growth factor receptor internalization. The same dominant-negative mutants of Cbl did not block epidermal growth factor receptor recruitment into coated pits but retained receptors in coated pits, thus preventing receptor endocytosis and transport to endosomes. These data suggest that the linker and RING finger domain of Cbl may function during late steps of coated vesicle formation. We propose that the RING domain of Cbl facilitates endocytosis either by epidermal growth factor receptor monoubiquitylation or by ubiquitylation of proteins associated with the receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号