首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An adhesion-promoting protein involved in the binding of Lactobacillus fermentum strain 104R to small intestinal mucus from piglets and to partially purified gastric mucin was isolated and characterized. Spent culture supernatant fluid and bacterial cell wall extracts were fractionated by ammonium sulfate precipitation and gel filtration. The active fraction was purified by affinity chromatography. The adhesion-promoting protein was detected in the fractions by adhesion inhibition and dot blot assays and visualized by polyacrylamide gel electrophoresis (PAGE), sodium dodecyl sulfate-PAGE, and Western blotting with horseradish peroxidase-labeled mucus and mucin. The active fraction was characterized by estimating the relative molecular weight and by assessing the presence of carbohydrates in, and heat sensitivity of, the active region of the adhesion-promoting protein. The purified protein was digested with porcine trypsin, and the peptides were purified in a SMART system. The peptides were tested for adhesion to horseradish peroxidase-labeled mucin by using the dot blot adhesion assay. Peptides which bound mucin were sequenced. It was shown that the purified adhesion-promoting protein on the cell surface of L. fermentum 104R is extractable with 1 M LiCl and low concentrations of lysozyme but not with 0.2 M glycine. The protein could be released to the culture supernatant fluid after 24 h of growth and had affinity for both small intestinal mucus and gastric mucin. In the native state this protein was variable in size, and it had a molecular mass of 29 kDa when denatured. The denatured protein did not contain carbohydrate moieties and was not heat sensitive. Alignment of amino acids of the adhering peptides with sequences deposited in the EMBL data library showed poor homology with previously published sequences. The protein represents an important molecule for development of probiotics.  相似文献   

2.
The adhesion to whole and fractionated porcine gastric mucus of both Lactobacillus fermentum 104-S cells and a saccharide extracted from this strain was investigated. It has been shown previously that this saccharide had affinity for nonsecreting gastric epithelium. The mucus component(s) with affinity the bacterial cells was partly characterized by gel filtration and treatment with protease or metaperiodate. L. fermentum 104-S extracts containing the saccharide were radioactively labeled, fractionated by gel filtration, and tested for affinity for the gastric mucus component showing receptor activity for the whole cells of strain 104-S. The mucus material with affinity for the bacterial cells had a relative molecular weight of 30–70 K. From the results of treatment with protease or metaperiodate, it is proposed that the mucus components(s) that adhered to the whole bacterial cells contained glycoprotein groups. The radioactively labeled saccharide extracted from L. fermentum 104-S cells did not bind to the mucus fraction that had affinity for the whole cells. Conclusively, we suggest that the mechanism by which cells of L. fermentum 104-S adhere to the gastric mucus is different from the mechanism mediating the adhesion of this strain to the nonsecreting gastric epithelium. Cells of L. fermentum 104-S adhere to a glycoproteinaceous mucus component with a relative molecular weight of 30–70 K. Received: 29 August 1995 / Accepted: 26 December 1995  相似文献   

3.
The adhesion of Lactobacillus acidophilus BG2FO4, a human stool isolate, to two human enterocytelike cell lines (Caco-2 and HT-29) and to the mucus secreted by a subpopulation of mucus-secreting HT29-MTX cells was investigated. Scanning electron microscopy revealed that the bacteria interacted with the well-defined apical microvilli of Caco-2 cells without cell damage and with the mucus secreted by the subpopulation of HT29-MTX cells. The adhesion to Caco-2 cells did not require calcium and involved an adhesion-promoting factor that was present in the spent supernatant of L. acidophilus cultures. This factor promoted adhesion of poorly adhering human Lactobacillus casei GG but did not promote adhesion of L. casei CNRZ 387, a strain of dairy origin. The adherence components on the bacterial cells and in the spent supernatant were partially characterized. Carbohydrates on the bacterial cell wall appeared to be partly responsible for the interaction between the bacteria and the extracellular adhesion-promoting factor. The adhesion-promoting factor was proteinaceous, since trypsin treatment dramatically decreased the adhesion of the L. acidophilus strain. The adhesion-promoting factor may be an important component of Lactobacillus species that colonize the gastrointestinal tract.  相似文献   

4.
The adhesion of Lactobacillus acidophilus BG2FO4, a human stool isolate, to two human enterocytelike cell lines (Caco-2 and HT-29) and to the mucus secreted by a subpopulation of mucus-secreting HT29-MTX cells was investigated. Scanning electron microscopy revealed that the bacteria interacted with the well-defined apical microvilli of Caco-2 cells without cell damage and with the mucus secreted by the subpopulation of HT29-MTX cells. The adhesion to Caco-2 cells did not require calcium and involved an adhesion-promoting factor that was present in the spent supernatant of L. acidophilus cultures. This factor promoted adhesion of poorly adhering human Lactobacillus casei GG but did not promote adhesion of L. casei CNRZ 387, a strain of dairy origin. The adherence components on the bacterial cells and in the spent supernatant were partially characterized. Carbohydrates on the bacterial cell wall appeared to be partly responsible for the interaction between the bacteria and the extracellular adhesion-promoting factor. The adhesion-promoting factor was proteinaceous, since trypsin treatment dramatically decreased the adhesion of the L. acidophilus strain. The adhesion-promoting factor may be an important component of Lactobacillus species that colonize the gastrointestinal tract.  相似文献   

5.
Wang B  Wei H  Yuan J  Li Q  Li Y  Li N  Li J 《Current microbiology》2008,57(1):33-38
Adhesion of lactobacilli to the host gastrointestinal (GI) tract is considered an important factor in health-promoting effects. However, studies addressing the molecular mechanisms of the adhesion of lactobacilli to the host GI tract have not yet been performed. The aim of this work was to identify Lactobacillus reuteri surface molecules mediating adhesion to intestinal epithelial cells and mucins. Nine strains of lactobacilli were tested for their ability to adhere to human enterocyte-like HT-29 cells. The cell surface proteins involved in the adhesion of Lactobacillus to HT-29 cells and gastric mucin were extracted. The active fractions were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting with horseradish peroxidase-labeled mucin and NHS-Biotin-labeled HT-29 cells. Furthermore, tandem mass spectrometry analysis was performed to identify the surface protein that participates in adhesion. It was shown that the ability of lactobacilli to adhere to HT-29 cells in vitro varied considerably among different strains. The most adhesive strain was the chicken intestinal tract isolate Lactobacillus reuteri JCM1081 (495.07 +/- 80.03 bacterial cells/100 HT-29 cells). The adhesion of L. reuteri JCM1081 to HT-29 cells appeared to be mediated by a cell surface protein, with an approximate molecular mass of 29 kDa. The peptides generated from the 29-kDa protein significantly matched the Lr0793 protein sequence of L. reuteri strain ATCC55730 (~71.1% identity) and displayed significant sequence similarity to the putative ATP-binding cassette transporter protein CnBP.  相似文献   

6.
Aeromonas species are known to be involved in human gastrointestinal diseases. These organisms colonize the gastrointestinal tract. Aeromonas hydrophila, A. caviae, and A. sobria have been demonstrated microscopically to adhere to animal cell lines that express mucous receptors, but quantitative studies of adherence to mucosal components such as mucin have not been published to date. Purified bovine submaxillary gland, hog gastric mucin, and fish skin mucin were used as a model to study mucin-binding activity among A. caviae, A. hydrophila, and A. sobria strains. Our findings revealed that binding of radiolabeled and enzyme-conjugated mucins to Aeromonas cells varied depending on the labeling procedure. The highest binding was observed when the three mucin preparations were labeled with horseradish peroxidase. Binding of the various horseradish peroxidase-labeled mucins by A. caviae, A. hydrophila, and A. sobria cells is a common property among Aeromonas species isolated from human infections, diseased fish, and from environmental sources. The proportion of Aeromonas strains which bind the various horseradish peroxidase-labeled mucins was significantly higher for A. hydrophila than for A. caviae and A. sobria. Bacterial cell-surface extracts containing active mucin-binding components recognized the horseradish peroxidase-labeled mucins. The molecular masses of the mucin-binding proteins were estimated by SDS-PAGE and Western blot as follows: A. caviae strain A4812 (95 and 44 kDa); A. hydrophila strain 48748 (97, 45, 33 and 22 kDa); and A. sobria strain 48739 (95 and 43 kDa). Mucin interaction with Aeromonas cells was also studied in terms of growth in mucin-rich media. The culture conditions greatly influence the expression of A. hydrophila mucin-binding activity.  相似文献   

7.
The mechanism of adhesion of Lactobacillus fermentum strain 737 to mouse stomach squamous epithelium was investigated. Adhesion inhibition tests involving chelators, monosaccharides, periodate and concanavalin A and the use of bacteria grown in the presence of tunicamycin failed to clarify the adhesive mechanism. Washed bacterial cells had reduced adhesive capacity, except in the presence of spent broth culture supernatant fraction or cell washings. Spent culture supernatant fractions of erythrosine-supplemented broth did not enhance adhesion of washed cells. The adhesion-promoting factor(s) in the spent broth culture supernatant fractions and cell washings bound to both bacterial and epithelial cell surfaces, but did not promote adhesion of two other Lactobacillus strains which were not of mouse origin, thereby indicating host specificity for the adhesion-promoting activity. Chemical characteristics of the adhesion-promoting factor were determined by pretreatment of the dialysis retentate of spent broth culture supernatant fractions with proteolytic enzymes, concanavalin A-Sepharose or periodate before the adhesion assay. The adhesin was non-dialysable, pronase-sensitive, heat sensitive at 100 degrees C, had no affinity for concanavalin A-Sepharose and contained no carbohydrate groups active in the adhesion process. The protein profiles of dialysis retentates of spent broth culture supernatant fractions after bacterial growth in the absence and presence of erythrosine were determined by 2-dimensional SDS-PAGE. Gel filtration by HPLC was used for purification of an adhesion-promoting fraction. The host-specific adhesion of L. fermentum strain 737 was mediated by a protein, with an Mr of 12-13000, that was not detectable in cells grown in the presence of erythrosine. A model for the mode of binding of the adhesin to host epithelia and bacterial surfaces is proposed.  相似文献   

8.
A locus encoding two repetitive proteins that have LPXTG cell wall anchoring signals from Lactobacillus fermentum BR11 has been identified by using an antiserum raised against whole L. fermentum BR11 cells. The first protein, Rlp, is similar to the Rib surface protein from Streptococcus agalactiae, while the other protein, Mlp, is similar to the mucus binding protein Mub from Lactobacillus reuteri. It was shown that multiple copies of mlp exist in the genome of L. fermentum BR11. Regions of Rlp, Mlp, and the previously characterized surface protein BspA were used to surface display or secrete heterologous peptides in L. fermentum. The peptides tested were 10 amino acids of the human cystic fibrosis transmembrane regulator protein and a six-histidine epitope (His6). The BspA promoter and secretion signal were used in combination with the Rlp cell wall sorting signal to express, export, and covalently anchor the heterologous peptides to the cell wall. Detection of the cell surface protein fusions revealed that Rlp was a significantly better surface display vector than BspA despite having lower cellular levels (0.7 mg per liter for the Rlp fusion compared with 4 mg per liter for the BspA fusion). The mlp promoter and encoded secretion signal were used to express and export large (328-kDa at 10 mg per liter) and small (27-kDa at 0.06 mg per liter) amino-terminal fragments of the Mlp protein fused to the His6 and CFTR peptides or His6 peptide, respectively. Therefore, these newly described proteins from L. fermentum BR11 have potential as protein production and targeting vectors.  相似文献   

9.
Aims: To identify and characterize adhesion‐associated proteins in the potential probiotic Lactobacillus fermentum BCS87. Methods and Results: Protein suspensions obtained from the treatment of Lact. fermentum BCS87 with 1 mol 1?1 LiCl were analysed by Western blotting using HRP‐labelled porcine mucus and mucin. Two adhesion‐associated proteins with relative molecular weight of 29 and 32 kDa were identified. The N‐terminal and internal peptides of the 32 kDa protein (32‐Mmubp) were sequenced, and the corresponding gene (32‐mmub) was found by inverse polymerase chain reaction. The complete nucleotide sequence of 32‐mmub revealed an open reading frame of 903 bp encoding a primary protein of 300 amino acids and a mature protein of 272 residues. A basic local alignment search showed 47–99% identity to solute‐binding components of ATP binding cassette transporter proteins in Lactobacillus, Streptococcus and Clostridium. An OpuAC‐conserved domain was identified and phylogenetic relationship analysis confirmed that 32‐Mmubp belongs to the OpuAC family. Conclusions: Adhesion of Lact. fermentum BCS87 appeared to be mediated by two surface‐associated proteins. 32‐Mmubp is a component of ABC transporter system that also functions as an adhesin. Significance and Impact of the Study: Characterization of 32‐Mmubp and 32‐mmub will contribute to understanding the host–bacteria interactions of Lact. fermentum with the intestinal tract of pigs.  相似文献   

10.
Thirteen human bifidobacterial strains were tested for their abilities to adhere to human enterocyte-like Caco-2 cells in culture. The adhering strains were also tested for binding to the mucus produced by the human mucus-secreting HT29-MTX cell line in culture. A high level of calcium-independent adherence was observed for Bifidobacterium breve 4, for Bifidobacterium infantis 1, and for three fresh human isolates from adults. As observed by scanning electron microscopy, adhesion occurs to the apical brush border of the enterocytic Caco-2 cells and to the mucus secreted by the HT29-MTX mucus-secreting cells. The bacteria interacted with the well-defined apical microvilli of Caco-2 cells without cell damage. The adhesion to Caco-2 cells of bifidobacteria did not require calcium and was mediated by a proteinaceous adhesion-promoting factor which was present both in the bacterial whole cells and in the spent supernatant of bifidobacterium culture. This adhesion-promoting factor appeared species specific, as are the adhesion-promoting factors of lactobacilli. We investigated the inhibitory effect of adhering human bifidobacterial strains against intestinal cell monolayer colonization by a variety of diarrheagenic bacteria. B. breve 4, B. infantis 1, and fresh human isolates were shown to inhibit cell association of enterotoxigenic, enteropathogenic, diffusely adhering Escherichia coli and Salmonella typhimurium strains to enterocytic Caco-2 cells in a concentration-dependent manner. Moreover, B. breve 4 and B. infantis 1 strains inhibited, dose dependently, Caco-2 cell invasion by enteropathogenic E. coli, Yersinia pseudotuberculosis, and S. typhimurium strains.  相似文献   

11.
Rat submandibular mucin (RSM) was purified by acid precipitation, then alcohol precipitation of the 30000g supernatant of gland homogenate, followed by column chromatography on Sephadex G-200. The mucin, which was eluted in the void volume, had an amino acid profile typical of a salivary mucus glycoprotein with high proportions of threonine, serine and proline (48.8% of total amino acids), and low proportions of aromatic and basic amino acids. It consisted of 63% (w/w) carbohydrate, which was shown by g.l.c. analysis to contain N-acetylglucosamine, N-acetylgalactosamine, galactose, sialic acid and fucose in the proportions 1.0:3.4:2.6:3.1:1.2. After staining of the mucin with periodic acid/Schiff reagent, analytical equilibrium ultracentrifugation in a CsCl density gradient produced a symmetrical peak of buoyant density 1.449g/ml, without evidence of protein contaminants. Sedimentation velocity centrifugation revealed a major periodate/Schiff-positive component (S020,w 5.06) with an associated shoulder of slower sedimenting material, suggesting polydispersity in the size of the mucin. Our findings suggest that the RSM purified in these studies has a molecular weight between 200000 and 1×106. Antibody to RSM was prepared in a rabbit and produced a single precipitin line on immunoelectro-osmophoresis with the mucin. Immunofluorescence studies showed that the antibody localized only to submandibular acinar cells and confirmed that these cells were the source of RSM. The antibody was not directed towards the blood-group-A determinant (terminal N-acetylgalactosamine) present in the mucin.  相似文献   

12.
Partially purified native-pig gastric mucus and purified pig gastric mucin, prepared by column chromatography and caesium chloride (CsCl) density-gradient ultracentrifugation, were subjected to pepsin digestion. The products of peptic digestion were chromatographed on Sepharose CL-2B, and fractions were assayed for carbohydrate by the periodic acid-Schiff reaction. The polymeric gastric mucin in the purified mucin samples was readily degraded by pepsin. In sharp contrast, the polymeric mucin in the partially purified mucus was relatively resistant to pepsin digestion. In 45 min, pepsin degraded 40% of the polymeric mucin in the purified samples, whereas it produced no significant degradation (less than 10%) in the partially purified mucus samples. In partially purified gastric mucus, treated with CsCl but not fractionated by ultracentrifugation, digestion with pepsin was also slow and incomplete. This showed that differences in susceptibility between partially purified and purified preparations are not due to the chaotropic effects of CsCl. In addition, the recombination of low-density nonmucin fractions in CsCl ultracentrifugation with the mucin also resisted pepsin digestion. Finally, we have shown that the low-density fractions in mucus exhibited a strong inhibitory effect of peptic activity in vitro. We conclude that under our experimental conditions, pepsin has little effect on partially purified mucus, and our findings indicate an inhibitor of peptic digestion is present in native gastric mucus. It is likely, but unproven, that this inhibitor is a noncovalently bound lipid present in the low-density fraction.  相似文献   

13.
Few studies, if any, have addressed the adhesion of enterococci to the intestinal mucosa and their interference with the adhesion of pathogens, although more than 60% of probiotic preparations in the market contain strains of enterococci. The objective of this study was to investigate if Enterococcus faecium 18C23 has the ability to inhibit the adhesion of Escherichia coli K88ac and K88MB to the small intestine mucus of piglets. Approximately 9% of E. faecium 18C23 organisms adhered to the small intestine mucus, and the adhesion was found to be specific. Living E. faecium 18C23 culture efficiently inhibited the adhesion of E. coli K88ac and K88MB to the piglet intestine mucus. Inhibition of the adhesion of E. coli K88ac to the small intestine mucus was found to be dose dependent. Inhibition of >90% was observed when 109 CFU or more of living E. faecium 18C23 culture per ml was added simultaneously with E. coli to immobilized mucus. The substances from both the 18C23 cells and the spent culture supernatant contributed to the inhibition of adhesion of E. coli K88 to the small intestine mucus receptors. The inhibiting effect was not solely a pH effect since considerable inhibitory action was demonstrated after neutralizing the mixture or spent culture supernatant to pH 7.0. Part of the inhibition of adhesion of E. coli K88ac by E. faecium 18C23 or its supernatant might occur through steric hindrance.  相似文献   

14.
Expression of the mucus adhesion gene Mub, surface layer protein Slp and adhesion-like factor EF-Tu by Lactobacillus acidophilus ATCC 4356 grown in the presence of mucin, bile and pancreatin and at low pH was studied using real-time PCR. None of the genes were up-regulated under increasing concentrations of mucin, while Slp and EF-Tu were up-regulated in the presence of bile and pancreatin at normal concentrations (0.3%, w/v) and under stress conditions (1.0%, w/v).  相似文献   

15.
Sulfation of mucus glycoproteins, reaction catalyzed by Golgi resident sulfotransferase, is an important event in posttranslational processing of gastric mucins. Here we report the purification of mucus glycoprotein sulfotransferase enzyme from the microsomal fraction of rat gastric mucosa. The enzyme was released from the membrane with 0.5% Triton X-100 and precipitated from the 100,000xg supernatant with 90% ice-cold acetone. The enzyme activity (44.7 pmol/mg/45 min) in the precipitate was enriched nearly 10-fold compared to Triton X-100 extract of microsomal membrane (4.2 pmol/mg/45 min). On SDS-PAGE, the enzyme gave a single 43 kDa protein band, which was active towards mucin, but did not catalyze the sulfation of galactosylceramide. The study is the first to report the characteristics of a sulfotransferase enzyme specific for gastric mucin.  相似文献   

16.
目的研究益生菌粘附肠上皮细胞机制,探讨益生菌的生物屏障机制,筛选益生菌.方法研究昂立植物乳杆菌(LP-Onlly)培养上清液,对病原菌和自身菌粘附Lovo细胞的影响.结果培养12 h的LP-Onlly发酵上清液在一定程度上能抑制病原菌的粘附,同时耗尽培养上清液,有促进自身菌粘附的作用.结论耗尽培养上清液中存在粘附素成分,能介导该菌的粘附.  相似文献   

17.
Mucus glycoproteins (mucins), the principal determinants of mucus protective qualities and mucosal defense, are studied extensively to define pathological aberrations in the relation to gastrointestinal disease and to develop the mucous barrier strengthening agents. Recent work from our laboratory provided evidence as to the initial stages of the gastrointestinal mucin synthesis, molecular size of the apomucin, its macromolecular organization and interaction with other elements of gastrointestinal mucus. Using monoclonal antibodies against apomucin (clone 1H7), O-glycosylated with N-acetylgalactosamine apomucin (clone 2B4), and that against carboxyl terminal of the apomucin (clone 3G12), the mucin synthesizing polysomes were isolated and glycosylated peptides ranging in size from 6-60 kDa identified. The in vitro synthesis in the cell-free system also afforded 60-64 kDa products recognized by 1H7 and 3G12 antimucin MAbs. The obtained results provided evidence that the mucin core consists of 60 kDa peptide which at cotranslational stage is O-glycosylated with N-acetylgalactosamine. Studies on mucin polymer assembly revealed that mucin preparations prepared by equilibrium density gradient centrifugation and Sepharose 2B chromatography (Mantle, M., Mantle, D., and Allen, A. (1981) Biochem. J. 195, 277-285) are not completely purified and contain DNA and extraneous proteins. The evidence was obtained that so called mucin "link protein", 118 kDa glycopeptide, is a N-glycosylated fragment of fibronectin, whereas the supposedly native undegraded mucin isolated by Carlstedt et al. (Biochem. J. (1983) 211, 13-22) was found to contain mucin-fibronectin-DNA complexes. The general picture that emerged from the studies is that the pure mucin consists of 60 kDa glycosylated peptides only. The carboxyl terminal (8-12 kDa fragment) of these peptides is not glycosylated (naked) and is responsible for mucin interaction with fibronectin and other fibronectin-like extracellular matrix proteins. While the formation of the mucosal coat depends on many other factors and extracellular components, our findings on mucin structure and interaction with the extracellular matrix proteins provide explanation as to the possible mechanism of mucin adherence to the epithelial surfaces.  相似文献   

18.
The native GroEL-like protein was purified from Campylobacter rectus, a putative periodontal pathogen, by affinity chromatography on ATP-agarose followed by high performance liquid chromatography on Superose 6. The purified 64-kDa protein (denatured form of GroEL-like protein) was immunoreactive by SDS-PAGE and Western immunoblotting with the monoclonal antibody directed against heat shock protein 60 of human origin. The native GroEL-like protein stimulated both interleukin-6 (IL-6) and IL-8 secretion by a confluent monolayer of human gingival fibroblast in their culture supernatant. During the 22-h incubation, the amounts of IL-6 and IL-8 were increased by 5.4- and 3.5-fold, respectively. These data suggested that the GroEL-like protein might be considered to be a virulence factor of C. rectus in periodontal disease.  相似文献   

19.
Crude soluble mucus from sheep small intestine was freed of nearly all the nucleic acid contaminants by precipitation with protamine sulphate and treatment with nucleases. After removal of non-covalently bound proteins by equilibrium density-gradient centrifugation in CsCl, a high-Mr glycoprotein was isolated by repeated h.p.l.c. from the partially purified mucin. The high degree of purity of the high-Mr mucin was borne out by (a) the observation of a single boundary on analytical ultracentrifugation in the presence of 5M-guanidinium chloride and (b) the observation of apparent monodispersity on sedimentation-equilibrium analysis. The Mr of the highly purified mucin, determined by sedimentation equilibrium, was 5.0 (+/- 0.1) X 10(6) and was concentration-independent. Finally, only goblet cells and the mucus blanket lining the intestinal epithelial cells were immunofluorescent when guinea-pig anti-(highly purified mucin) serum was used in an indirect immunofluorescence assay. The above antiserum reacted with apparently equal strength with goblet cells and with free mucin in abomasum, caecum and colon. The chemical composition of the glycoprotein was 66% carbohydrate and 34% protein, 45% of the latter being composed of valine and threonine. The glycoprotein migrated anodally on immunoelectrophoresis and contained 7.1% (w/w) sulphate. Neutral hexoses accounted for nearly half of the total carbohydrate content, followed by galactosamine and glucosamine. Whereas fucose and sialic acid were present in only small amounts, uronic acid was not detectable in the highly purified mucus glycoprotein.  相似文献   

20.
Examination of supernatant fractions from broth cultures of Lactobacillus fermentum BR11 revealed the presence of a number of proteins, including a 27-kDa protein termed Sep. The amino-terminal sequence of Sep was determined, and the gene encoding it was cloned and sequenced. Sep is a 205-amino-acid protein and contains a 30-amino-acid secretion signal and has overall homology (between 39 and 92% identity) with similarly sized proteins of Lactobacillus reuteri, Enterococcus faecium, Streptococcus pneumoniae, Streptococcus agalactiae, and Lactobacillus plantarum. The carboxy-terminal 81 amino acids of Sep also have strong homology (86% identity) to the carboxy termini of the aggregation-promoting factor (APF) surface proteins of Lactobacillus gasseri and Lactobacillus johnsonii. The mature amino terminus of Sep contains a putative peptidoglycan-binding LysM domain, thereby making it distinct from APF proteins. We have identified a common motif within LysM domains that is shared with carbohydrate binding YG motifs which are found in streptococcal glucan-binding proteins and glucosyltransferases. Sep was investigated as a heterologous peptide expression vector in L. fermentum, Lactobacillus rhamnosus GG and Lactococcus lactis MG1363. Modified Sep containing an amino-terminal six-histidine epitope was found associated with the cells but was largely present in the supernatant in the L. fermentum, L. rhamnosus, and L. lactis hosts. Sep as well as the previously described surface protein BspA were used to express and secrete in L. fermentum or L. rhamnosus a fragment of human E-cadherin, which contains the receptor region for Listeria monocytogenes. This study demonstrates that Sep has potential for heterologous protein expression and export in lactic acid bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号