首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
采伐对小兴安岭落叶松-泥炭藓沼泽温室气体排放的影响   总被引:4,自引:0,他引:4  
利用静态箱-气相色谱法,研究了择伐和皆伐对小兴安岭落叶松-泥炭藓沼泽CH4、CO2、N2O排放的影响.结果表明:采伐改变了落叶松-泥炭藓沼泽CH4和N2O的季节排放规律,其中对照样地的CH4为夏季吸收、秋季排放,N2O夏秋季吸收;择伐样地的CH4和N2O在夏季集中排放;皆伐样地的CH4在夏秋季排放,N2O则在夏季吸收、秋季排放.但采伐对CO2季节排放规律的影响,均为夏季春季秋季.采伐改变了CH4、CO2和N2O的源汇功能,对照样地为CO2的排放源、CH4和N2O的弱吸收汇;采伐地的CO2排放量下降了1/4,并转化为N2O弱排放源,为CH4的弱排放源或强排放源.择伐样地温室效应贡献潜力较对照样地下降了24.5%,皆伐地则提高了3.2%.  相似文献   

2.
盛宣才  吴明  邵学新  李长明  梁雷  叶小齐 《生态学报》2016,36(15):4792-4800
水位是影响湿地温室气体排放的重要因子。采用静态箱-气相色谱法研究了模拟条件下不同水位(0、5、10 cm和20 cm)对芦苇湿地温室气体(CO_2、CH_4、N_2O)夏季昼夜通量变化的影响。结果表明,1)4种不同水位CO_2通量日变化均表现为昼低夜高,且白天为汇,夜间为源,整体均表现为CO_2的汇;不同水位CH_4通量日变化则均表现为昼高夜低,且整体上均表现为CH_4的源;N_2O通量总体上水淹后均表现为昼高夜低而0cm水位表现为昼低夜高;2)随着水位的增加CH_4和CO_2平均通量呈现先增加后降低的趋势,且10cm水位下CH_4和CO_2平均通量最高,N_2O通量则在5cm水位最高;3)通过相关性和主成分分析表明,气温、水温是土壤CH_4、N_2O通量日变化的主导因子,而土壤温度是CO_2日变化通量的主导因子,同时,土壤p H、Eh及水体p H、Eh是CO_2通量日变化的重要因子之一。  相似文献   

3.
温带针阔混交林土壤碳氮气体通量的主控因子与耦合关系   总被引:3,自引:0,他引:3  
中高纬度森林地区由于气候条件变化剧烈,土壤温室气体排放量的估算存在很大的不确定性,并且不同碳氮气体通量的主控因子与耦合关系尚不明确。以长白山温带针阔混交林为研究对象,采用静态箱-气相色谱法连续4a(2005—2009年)测定土壤二氧化碳(CO2)、甲烷(CH4)和氧化亚氮(N2O)净交换通量以及温度、水分等相关环境因子。研究结果表明:温带针阔混交林土壤整体上表现为CO2和N2O的排放源和CH4的吸收汇。土壤CH4、CO2和N2O通量的年均值分别为-1.3 kg CH4hm-2a-1、15102.2 kg CO2hm-2a-1和6.13 kg N2O hm-2a-1。土壤CO2通量呈现明显的季节性规律,主要受土壤温度的影响,水分次之;土壤CH4通量的季节变化不明显,与土壤水分显著正相关;土壤N2O通量季节变化与土壤CO2通量相似,与土壤水分、温度显著正相关。土壤CO2通量和CH4通量不存在任何类型的耦合关系,与N2O通量也不存在耦合关系;土壤CH4和N2O通量之间表现为消长型耦合关系。这项研究显示温带针阔混交林土壤碳氮气体通量主要受环境因子驱动,不同气体通量产生与消耗之间存在复杂的耦合关系,下一步研究需要深入探讨环境变化对其耦合关系的影响以及内在的生物驱动机制。  相似文献   

4.
We studied concentrations of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) in the eutrophic Temmesjoki River and Estuary in the Liminganlahti Bay in 2003–2004 and evaluated the atmospheric fluxes of the gases based on measured concentrations, wind speeds and water current velocities. The Temmesjoki River was a source of CO2, CH4 and N2O to the atmosphere, whereas the Liminganlahti Bay was a minor source of CH4 and a minor source or a sink of CO2 and N2O. The results show that the fluxes of greenhouse gases in river ecosystems are highly related to the land use in its catchment areas. The most upstream river site, surrounded by forests and drained peatlands, released significant amounts of CO2 and CH4, with average fluxes of 5,400 mg CO2–C m−2 d−1 and 66 mg CH4–C m−2 d−1, and concentrations of 210 μM and 345 nM, respectively, but N2O concentrations, at an average of 17 nM, were close to the atmospheric equilibrium concentration. The downstream river sites surrounded by agricultural soils released significant amounts of N2O (with an average emission of 650 μg N2O–N m−2 d−1 and concentration of 22 nM), whereas the CO2 and CH4 concentrations were low compared to the upstream site (55 μM and 350 nM). In boreal regions, rivers are partly ice-covered in wintertime (approximately 5 months). A large part of the gases, i.e. 58% of CO2, 55% of CH4 and 36% of N2O emissions, were found to be released during wintertime from unfrozen parts of the river.  相似文献   

5.
《Global Change Biology》2018,24(5):1843-1872
Central European grasslands are characterized by a wide range of different management practices in close geographical proximity. Site‐specific management strategies strongly affect the biosphere–atmosphere exchange of the three greenhouse gases (GHG) carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4). The evaluation of environmental impacts at site level is challenging, because most in situ measurements focus on the quantification of CO2 exchange, while long‐term N2O and CH4 flux measurements at ecosystem scale remain scarce. Here, we synthesized ecosystem CO2, N2O, and CH4 fluxes from 14 managed grassland sites, quantified by eddy covariance or chamber techniques. We found that grasslands were on average a CO2 sink (−1,783 to −91 g CO2 m−2 year−1), but a N2O source (18–638 g CO2‐eq. m−2 year−1), and either a CH4 sink or source (−9 to 488 g CO2‐eq. m−2 year−1). The net GHG balance (NGB) of nine sites where measurements of all three GHGs were available was found between −2,761 and −58 g CO2‐eq. m−2 year−1, with N2O and CH4 emissions offsetting concurrent CO2 uptake by on average 21 ± 6% across sites. The only positive NGB was found for one site during a restoration year with ploughing. The predictive power of soil parameters for N2O and CH4 fluxes was generally low and varied considerably within years. However, after site‐specific data normalization, we identified environmental conditions that indicated enhanced GHG source/sink activity (“sweet spots”) and gave a good prediction of normalized overall fluxes across sites. The application of animal slurry to grasslands increased N2O and CH4 emissions. The N2O‐N emission factor across sites was 1.8 ± 0.5%, but varied considerably at site level among the years (0.1%–8.6%). Although grassland management led to increased N2O and CH4 emissions, the CO2 sink strength was generally the most dominant component of the annual GHG budget.  相似文献   

6.
Using molecular simulations, we studied a diverse collection of zeolite–imidazolate frameworks (ZIFs) to evaluate their performances in adsorption- and membrane-based gas separations. Molecular simulations were performed for both single-component gases (CH4, CO2, H2 and N2) and binary gas mixtures (CO2/CH4, CO2/N2, CO2/H2 and CH4/H2) to predict the intrinsic and mixture selectivities of ZIFs. These two selectivities were compared to discuss the importance of multi-component mixture effects on making predictions about the separation performance of a material. Gas separation performances of ZIFs were compared with other nanoporous materials and our results showed that several ZIFs can outperform well-known zeolites and metal–organic frameworks in CO2 separations. Several other properties of ZIFs such as gas permeability, working capacity and sorbent selection parameter were computed to identify the most promising materials in adsorption- and membrane-based separation of CO2/CH4, CO2/N2, CO2/H2 and CH4/H2.  相似文献   

7.
The effects of elevated concentrations of atmospheric CO2 on CH4 and N2O emissions from rice soil were investigated in controlled-environment chambers using rice plants growing in pots. Elevated CO2 significantly increased CH4 emission by 58% compared with ambient CO2. The CH4 emitted by plant-mediated transport and ebullition–diffusion accounted for 86.7 and 13.3% of total emissions during the flooding period under ambient level, respectively; and for 88.1 and 11.9% of total emissions during the flooding period under elevated CO2 level, respectively. No CH4 was emitted from plant-free pots, suggesting that the main source of emitted CH4 was root exudates or autolysis products. Most N2O was emitted during the first 3 weeks after flooding and rice transplanting, probably through denitrification of NO3 contained in the experimental soil, and was not affected by the CO2 concentration. Pre-harvest drainage suppressed CH4 emission but did not cause much N2O emission (< 10 μg N m−2 h−1) from the rice-plant pots at both CO2 concentrations.  相似文献   

8.
We investigated soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) exchanges in an age‐sequence (4, 17, 32, 67 years old) of eastern white pine (Pinus strobus L.) forests in southern Ontario, Canada, for the period of mid‐April to mid‐December in 2006 and 2007. For both CH4 and N2O, we observed uptake and emission ranging from ?160 to 245 μg CH4 m?2 h?1 and ?52 to 21 μg N2O m?2 h?1, respectively (negative values indicate uptake). Mean fluxes from mid‐April to mid‐December across the 4, 17, 32, 67 years old stands were similar for CO2 fluxes (259, 246, 220, and 250 mg CO2 m?2 h?1, respectively), without pattern for N2O fluxes (?3.7, 1.5, ?2.2, and ?7.6 μg N2O m?2 h?1, respectively), whereas the uptake rates of CH4 increased with stand age (6.4, ?7.9, ?10.8, and ?23.3 μg CH4 m?2 h?1, respectively). For the same period, the combined contribution of CH4 and N2O exchanges to the global warming potential (GWP) calculated from net ecosystem exchange of CO2 and aggregated soil exchanges of CH4 and N2O was on average 4%, <1%, <1%, and 2% for the 4, 17, 32, 67 years old stand, respectively. Soil CO2 fluxes correlated positively with soil temperature but had no relationship with soil moisture. We found no control of soil temperature or soil moisture on CH4 and N2O fluxes, but CH4 emission was observed following summer rainfall events. LFH layer removal reduced CO2 emissions by 43%, increased CH4 uptake during dry and warm soil conditions by more than twofold, but did not affect N2O flux. We suggest that significant alternating sink and source potentials for both CH4 and N2O may occur in N‐ and soil water‐limited forest ecosystems, which constitute a large portion of forest cover in temperate areas.  相似文献   

9.
The magnitude, temporal, and spatial patterns of soil‐atmospheric greenhouse gas (hereafter referred to as GHG) exchanges in forests near the Tropic of Cancer are still highly uncertain. To contribute towards an improvement of actual estimates, soil‐atmospheric CO2, CH4, and N2O fluxes were measured in three successional subtropical forests at the Dinghushan Nature Reserve (hereafter referred to as DNR) in southern China. Soils in DNR forests behaved as N2O sources and CH4 sinks. Annual mean CO2, N2O, and CH4 fluxes (mean±SD) were 7.7±4.6 Mg CO2‐C ha?1 yr?1, 3.2±1.2 kg N2O‐N ha?1 yr?1, and 3.4±0.9 kg CH4‐C ha?1 yr?1, respectively. The climate was warm and wet from April through September 2003 (the hot‐humid season) and became cool and dry from October 2003 through March 2004 (the cool‐dry season). The seasonality of soil CO2 emission coincided with the seasonal climate pattern, with high CO2 emission rates in the hot‐humid season and low rates in the cool‐dry season. In contrast, seasonal patterns of CH4 and N2O fluxes were not clear, although higher CH4 uptake rates were often observed in the cool‐dry season and higher N2O emission rates were often observed in the hot‐humid season. GHG fluxes measured at these three sites showed a clear increasing trend with the progressive succession. If this trend is representative at the regional scale, CO2 and N2O emissions and CH4 uptake in southern China may increase in the future in light of the projected change in forest age structure. Removal of surface litter reduced soil CO2 effluxes by 17–44% in the three forests but had no significant effect on CH4 absorption and N2O emission rates. This suggests that microbial CH4 uptake and N2O production was mainly related to the mineral soil rather than in the surface litter layer.  相似文献   

10.
Background and aims

The litter layer is a major source of CO2, and it also influences soil-atmosphere exchange of N2O and CH4. So far, it is not clear how much of soil greenhouse gas (GHG) emission derives from the litter layer itself or is litter-induced. The present study investigates how the litter layer controls soil GHG fluxes and microbial decomposer communities in a temperate beech forest.

Methods

We removed the litter layer in an Austrian beech forest and studied responses of soil CO2, CH4 and N2O fluxes and the microbial community via phospholipid fatty acids (PLFA). Soil GHG fluxes were determined with static chambers on 22 occasions from July 2012 to February 2013, and soil samples collected at 8 sampling events.

Results

Litter removal reduced CO2 emissions by 30 % and increased temperature sensitivity (Q10) of CO2 fluxes. Diffusion of CH4 into soil was facilitated by litter removal and CH4 uptake increased by 16 %. This effect was strongest in autumn and winter when soil moisture was high. Soils without litter turned from net N2O sources to slight N2O sinks because N2O emissions peaked after rain events in summer and autumn, which was not the case in litter-removal plots. Microbial composition was only transiently affected by litter removal but strongly influenced by seasonality.

Conclusions

Litter layers must be considered in calculating forest GHG budgets, and their influence on temperature sensitivity of soil GHG fluxes taken into account for future climate scenarios.

  相似文献   

11.
Climate change reduces the net sink of CH4 and N2O in a semiarid grassland   总被引:1,自引:0,他引:1  
Atmospheric concentrations of methane (CH4) and nitrous oxide (N2O) have increased over the last 150 years because of human activity. Soils are important sources and sinks of both potent greenhouse gases where their production and consumption are largely regulated by biological processes. Climate change could alter these processes thereby affecting both rate and direction of their exchange with the atmosphere. We examined how a rise in atmospheric CO2 and temperature affected CH4 and N2O fluxes in a well‐drained upland soil (volumetric water content ranging between 6% and 23%) in a semiarid grassland during five growing seasons. We hypothesized that responses of CH4 and N2O fluxes to elevated CO2 and warming would be driven primarily by treatment effects on soil moisture. Previously we showed that elevated CO2 increased and warming decreased soil moisture in this grassland. We therefore expected that elevated CO2 and warming would have opposing effects on CH4 and N2O fluxes. Methane was taken up throughout the growing season in all 5 years. A bell‐shaped relationship was observed with soil moisture with highest CH4 uptake at intermediate soil moisture. Both N2O emission and uptake occurred at our site with some years showing cumulative N2O emission and other years showing cumulative N2O uptake. Nitrous oxide exchange switched from net uptake to net emission with increasing soil moisture. In contrast to our hypothesis, both elevated CO2 and warming reduced the sink of CH4 and N2O expressed in CO2 equivalents (across 5 years by 7% and 11% for elevated CO2 and warming respectively) suggesting that soil moisture changes were not solely responsible for this reduction. We conclude that in a future climate this semiarid grassland may become a smaller sink for atmospheric CH4 and N2O expressed in CO2‐equivalents.  相似文献   

12.
Northern peatlands accumulate atmospheric CO2 thus counteracting climate warming. However, CH4 which is more efficient as a greenhouse gas than CO2, is produced in the anaerobic decomposition processes in peat. When peatlands are taken for forestry their water table is lowered by ditching. We studied long-term effects of lowered water table on the development of vegetation and the annual emissions of CO2, CH4 and N2O in an ombrotrophic bog and in a minerotrophic fen in Finland. Reclamation of the peat sites for forestry had changed the composition and coverage of the field and ground layer species, and increased highly the growth of tree stand at the drained fen. In general, drainage increased the annual CO2 emissions but the emissions were also affected by the natural fluctuations of water table. In contrast to CO2, drainage had decreased the emissions of CH4, the drained fen even consumed atmospheric CH4. CO2 and CH4 emissions were higher in the virgin fen than in the virgin bog. There were no N2O emissions from neither type of virgin sites. Drainage had, however, highly increased the N2O emissions from the fen. The results suggest that post-drainage changes in gas fluxes depend on the trophy of the original mires.  相似文献   

13.
Sheepfolds represent significant hot spot sources of greenhouse gases (GHG) in semi-arid grassland regions, such as Inner Mongolia in China. However, the annual contribution of sheepfolds to regional GHG emissions is still unknown. In order to quantify its annual contribution, we conducted measurements of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes at two sheepfold sites in the Baiyinxile administrative region of Inner Mongolia for 1 year, using static opaque chamber and gas chromatography methods. Our data show that, at an annual scale, both sheepfolds functioned as net sources of CO2, CH4 and N2O. Temperatures primarily determined the seasonal pattern of CO2 emission; 60–84% of the CO2 flux variation could be explained by temperature changes. High rates of net CH4 emissions from sheepfold soils were only observed when animals (sheep and goats) were present. While nitrous oxide emissions were also stimulated by the presence of animals, pulses of N2O emissions were also be related to rainfall and spring-thaw events. The total annual cumulative GHG emissions in CO2 equivalents (CO2: 1; CH4: 25; and N2O: 298) were quantified as 87.4?±?18.4 t ha?1 for the sheepfold that was used during the non-grazing period (i.e., winter sheepfold) and 136.7?±?15.9 t ha?1 used during the grazing period (i.e., summer sheepfold). Of the annual total GHG emissions, CH4 release accounted for approximately 1% of emissions, while CO2 and N2O emissions contributed to approximately 59% and 40%, respectively. The total GHG emission factor (CO2?+?CH4?+?N2O) per animal for the sheepfolds investigated in this study was 30.3 kg CO2 eq yr?1 head?1, which translates to 0.3, 18.8 and 11.2 kg CO2 eq yr?1 head?1 for CH4, CO2 and N2O, respectively. Sheepfolds accounted for approximately 34% of overall N2O emissions in the Baiyinxile administrative region, a typical steppe region within Inner Mongolia. The contribution of sheepfolds to the regional CO2 or CH4 exchange is marginal.  相似文献   

14.
Bo Li  Shihao Wei 《Molecular simulation》2013,39(13):1131-1142
In this study, we investigated the adsorption and separation behaviours of CO2, N2 and CH4 in ZIF-78 and ZIF-79 by means of grand canonical Monte Carlo methods. Our simulations indicate that preferential adsorption sites are mainly located at the regions where guest molecules can maximise interactions with the imidazolate (IM) linkers. The –NO2 and –CH3 functional groups are not the major binding sites that directly bind the guest molecules. Instead, they alter the electronic structure and polarity of the adjacent IM linkers to affect the adsorption behaviours. In addition, we found that the selectivity of CO2 over N2 or CH4 is found to be dependent on the component fractions of CO2/N2 and CO2/CH4 mixtures. Specifically, the selectivity of CO2 over N2 increases with CO2 composition fraction, while the trend for the selectivity of CO2/CH4 was opposite.  相似文献   

15.
Soils provide the largest terrestrial carbon store, the largest atmospheric CO2 source, the largest terrestrial N2O source and the largest terrestrial CH4 sink, as mediated through root and soil microbial processes. A change in land use or management can alter these soil processes such that net greenhouse gas exchange may increase or decrease. We measured soil–atmosphere exchange of CO2, N2O and CH4 in four adjacent land‐use systems (native eucalypt woodland, clover‐grass pasture, Pinus radiata and Eucalyptus globulus plantation) for short, but continuous, periods between October 2005 and June 2006 using an automated trace gas measurement system near Albany in southwest Western Australia. Mean N2O emission in the pasture was 26.6 μg N m−2 h−1, significantly greater than in the natural and managed forests (< 2.0 μg N m−2 h−1). N2O emission from pasture soil increased after rainfall events (up to 100 μg N m−2 h−1) and as soil water content increased into winter, whereas no soil water response was detected in the forest systems. Gross nitrification through 15N isotope dilution in all land‐use systems was small at water holding capacity < 30%, and under optimum soil water conditions gross nitrification ranged between < 0.1 and 1.0 mg N kg−1 h−1, being least in the native woodland/eucalypt plantation < pine plantation < pasture. Forest soils were a constant CH4 sink, up to −20 μg C m−2 h−1 in the native woodland. Pasture soil was an occasional CH4 source, but weak CH4 sink overall (−3 μg C m−2 h−1). There were no strong correlations (R < 0.4) between CH4 flux and soil moisture or temperature. Soil CO2 emissions (35–55 mg C m−2 h−1) correlated with soil water content (R < 0.5) in all but the E. globulus plantation. Soil N2O emissions from improved pastures can be considerable and comparable with intensively managed, irrigated and fertilised dairy pastures. In all land uses, soil N2O emissions exceeded soil CH4 uptake on a carbon dioxide equivalent basis. Overall, afforestation of improved pastures (i) decreases soil N2O emissions and (ii) increases soil CH4 uptake.  相似文献   

16.
场镇发展是西南山区城镇发展的重要模式,且大部分场镇沿河分布,快速城镇发展给河流水环境及生物地化过程带来了一系列影响,然而其对河流温室气体排放时空格局的影响及机制尚不清楚。选择流域场镇发展特征明显的黑水滩河为研究对象,于2014年9月、12月、2015年3月、6月,对流域内干、支流水体温室气体浓度及扩散通量进行分析,旨在阐明流域场镇式发展下河流温室气体排放时空特征及关键驱动因素。研究结果表明,黑水滩河干、支流水体年均二氧化碳分压(pCO_2)及甲烷(CH_4)、一氧化二氮(N_2O)浓度均处于过饱和状态,是大气温室气体的净排放源;流域内干、支流水体流经不同场镇区前后水体碳、氮、磷及叶绿素a含量均不同程度增加,从上游向下游呈现明显的污染累积;水体溶存pCO_2\\CH_4\\N_2O浓度及扩散通量在不同场镇前后也呈现显著增加的趋势,三种温室气体扩散通量平均增幅分别为25.88%、55.22%、99.64%;河流水体pCO_2与N_2O浓度及通量秋季高于其他季节,CH_4浓度及扩散通量春季最高,秋季次之,夏、冬季最低,温室气体浓度及排放的季节变化主要受温度和降雨格局共同影响。相关分析表明,pCO_2与水温和pH关系密切,而水体CH_4和N_2O浓度与水体碳、氮、磷等生源要素均呈显著的正相关关系,水体CH_4与N_2O浓度对生源要素输入极为敏感,流域场镇发展带来的河流污染负荷的增加可能对水体CH_4与N_2O排放产生明显的激发效应。本研究认为,山区河流流域内沿河串珠状场镇分布对河流水体生源要素及其他理化性质产生累积影响,进而改变了水体温室气体的产生与排放时空格局。  相似文献   

17.
The first full greenhouse gas (GHG) flux budget of an intensively managed grassland in Switzerland (Chamau) is presented. The three major trace gases, carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) were measured with the eddy covariance (EC) technique. For CO2 concentrations, an open‐path infrared gas analyzer was used, while N2O and CH4 concentrations were measured with a recently developed continuous‐wave quantum cascade laser absorption spectrometer (QCLAS). We investigated the magnitude of these trace gas emissions after grassland restoration, including ploughing, harrowing, sowing, and fertilization with inorganic and organic fertilizers in 2012. Large peaks of N2O fluxes (20–50 nmol m?2 s?1 compared with a <5 nmol m?2 s?1 background) were observed during thawing of the soil after the winter period and after mineral fertilizer application followed by re‐sowing in the beginning of the summer season. Nitrous oxide (N2O) fluxes were controlled by nitrogen input, plant productivity, soil water content and temperature. Management activities led to increased variations of N2O fluxes up to 14 days after the management event as compared with background fluxes measured during periods without management (<5 nmol m?2 s?1). Fluxes of CO2 remained small until full plant development in early summer 2012. In contrast, methane emissions showed only minor variations over time. The annual GHG flux budget was dominated by N2O (48% contribution) and CO2 emissions (44%). CH4 flux contribution to the annual budget was only minor (8%). We conclude that recently developed multi‐species QCLAS in an EC system open new opportunities to determine the temporal variation of N2O and CH4 fluxes, which further allow to quantify annual emissions. With respect to grassland restoration, our study emphasizes the key role of N2O and CO2 losses after ploughing, changing a permanent grassland from a carbon sink to a significant carbon source.  相似文献   

18.
SUMMARY 1. The effects of increasing CO2 and nitrogen loading and of a change in water table and temperature on littoral CH4, N2O and CO2 fluxes were studied in a glasshouse experiment with intact sediment cores including vegetation (mainly sedges), taken from a boreal eutrophic lake in Finland. Sediments with the water table held at a level of 0 or at ?15 cm were incubated in an atmosphere of 360 or 720 p.p.m. CO2 for 18 weeks. The experiment included fertilisation with NO3 and NH4+ (to a total 3 g N m?2). 2. Changes in the water table and temperature strongly regulated sediment CH4 and cCO2 fluxes (community CO2 release), but did not affect N2O emissions. Increase in the water table increased CH4 emissions but reduced cCO2 release, while increase in temperature increased emissions of both CO2 and CH4. 3. The raised CO2 increased carbon turnover in the sediments, such that cCO2 release was increased by 16–26%. However, CH4 fluxes were not significantly affected by raised CO2, although CH4 production potential (at 22 °C) of the sediments incubated at high CO2 was increased. In the boreal region, littoral CH4 production is more likely to be limited by temperature than by the availability of carbon. Raised CO2 did not affect N2O production by denitrification, indicating that this process was not carbon limited. 4. A low availability of NO3 did severely limit N2O production. The NO3 addition caused up to a 100‐fold increase in the fluxes of N2O. The NH4+ addition did not increase N2O fluxes, indicating low nitrification capacity in the sediments.  相似文献   

19.
Rapid climate change and intensified human activities have resulted in water table lowering (WTL) and enhanced nitrogen (N) deposition in Tibetan alpine wetlands. These changes may alter the magnitude and direction of greenhouse gas (GHG) emissions, affecting the climate impact of these fragile ecosystems. We conducted a mesocosm experiment combined with a metagenomics approach (GeoChip 5.0) to elucidate the effects of WTL (?20 cm relative to control) and N deposition (30 kg N ha?1 yr?1) on carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes as well as the underlying mechanisms. Our results showed that WTL reduced CH4 emissions by 57.4% averaged over three growing seasons compared with no‐WTL plots, but had no significant effect on net CO2 uptake or N2O flux. N deposition increased net CO2 uptake by 25.2% in comparison with no‐N deposition plots and turned the mesocosms from N2O sinks to N2O sources, but had little influence on CH4 emissions. The interactions between WTL and N deposition were not detected in all GHG emissions. As a result, WTL and N deposition both reduced the global warming potential (GWP) of growing season GHG budgets on a 100‐year time horizon, but via different mechanisms. WTL reduced GWP from 337.3 to ?480.1 g CO2‐eq m?2 mostly because of decreased CH4 emissions, while N deposition reduced GWP from 21.0 to ?163.8 g CO2‐eq m?2, mainly owing to increased net CO2 uptake. GeoChip analysis revealed that decreased CH4 production potential, rather than increased CH4 oxidation potential, may lead to the reduction in net CH4 emissions, and decreased nitrification potential and increased denitrification potential affected N2O fluxes under WTL conditions. Our study highlights the importance of microbial mechanisms in regulating ecosystem‐scale GHG responses to environmental changes.  相似文献   

20.
Warming can accelerate the decomposition of soil organic matter and stimulate the release of soil greenhouse gases (GHGs), but to what extent soil release of methane (CH4) and nitrous oxide (N2O) may contribute to soil C loss for driving climate change under warming remains unresolved. By synthesizing 1,845 measurements from 164 peer‐reviewed publications, we show that around 1.5°C (1.16–2.01°C) of experimental warming significantly stimulates soil respiration by 12.9%, N2O emissions by 35.2%, CH4 emissions by 23.4% from rice paddies, and by 37.5% from natural wetlands. Rising temperature increases CH4 uptake of upland soils by 13.8%. Warming‐enhanced emission of soil CH4 and N2O corresponds to an overall source strength of 1.19, 1.84, and 3.12 Pg CO2‐equivalent/year under 1°C, 1.5°C, and 2°C warming scenarios, respectively, interacting with soil C loss of 1.60 Pg CO2/year in terms of contribution to climate change. The warming‐induced rise in soil CH4 and N2O emissions (1.84 Pg CO2‐equivalent/year) could reduce mitigation potential of terrestrial net ecosystem production by 8.3% (NEP, 22.25 Pg CO2/year) under warming. Soil respiration and CH4 release are intensified following the mean warming threshold of 1.5°C scenario, as compared to soil CH4 uptake and N2O release with a reduced and less positive response, respectively. Soil C loss increases to a larger extent under soil warming than under canopy air warming. Warming‐raised emission of soil GHG increases with the intensity of temperature rise but decreases with the extension of experimental duration. This synthesis takes the lead to quantify the ecosystem C and N cycling in response to warming and advances our capacity to predict terrestrial feedback to climate change under projected warming scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号