首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The alc promoter system, derived from the filamentous fungi Aspergillus nidulans, allows chemically regulated gene expression in plants and thereby the study of gene function as well as metabolic and developmental processes. In addition to ethanol, this system can be activated by acetaldehyde, described as the physiological inducer in A. nidulans. Here, we show that in contrast to ethanol, acetaldehyde allows tissue-specific activation of the alc promoter in transgenic tobacco plants. Soil drenching with aqueous acetaldehyde solutions at a concentration of 0.05% (v/v) resulted in the rapid and temporary induction of the alc gene expression system exclusively in roots. In addition, the split root system allows activation to be restricted to the treated part of the root. The temporary activation of the alc system by soil drenching with acetaldehyde could be prolonged over several weeks by subsequent applications at intervals of 7 d. This effect was demonstrated for the root-specific induction of a yeast-derived apoplast-located invertase under the control of the alcohol-inducible promoter system. In leaves, which exhibit a lower responsiveness to acetaldehyde than roots, the alc system was induced in the directly treated tissue only. Thus, acetaldehyde can be used as a local inducer of the alc gene expression system in tobacco plants.  相似文献   

2.
The location of GUS gene expression under control of T-cyt gene (gene 4 of T- DNA coding isopenteryl transferase) 5′ region in transgenic tobacco (Nicotiana tabacum cv. W38) and potato (Solanum tuberosum L, cv. Desiree) plants was examined with biochemical assays. The results showed differential distribution in various organs and different cell types. The highest levels of GUS activity were found in tobacco stem where axillary bud was initiated and potato buds on tubers. Moreover, the expression of T-cyt promoter/GUS was found to be inducible in transgenic tobacco stem with cytokinin rather than auxin treatment. Additionally, the level of expression was high in the wounded leaf of transgenic potato. It was suggested that T-cyt promoter may be selectively induced by some exogenous plant hormones.  相似文献   

3.
Controlled expression of transgenes in plants is key to the characterization of gene function and the regulated manipulation of growth and development. The alc gene-expression system, derived from the filamentous fungus Aspergillus nidulans, has previously been used successfully in both tobacco and potato, and has potential for use in agriculture. Its value to fundamental research is largely dependent on its utility in Arabidopsis thaliana. We have undertaken a detailed function analysis of the alc regulon in A. thaliana. By linking the alcA promoter to beta-glucuronidase (GUS), luciferase (LUC) and green fluorescent protein (GFP) genes, we demonstrate that alcR-mediated expression occurs throughout the plant in a highly responsive manner. Induction occurs within one hour and is dose-dependent, with negligible activity in the absence of the exogenous inducer for soil-grown plants. Direct application of ethanol or exposure of whole plants to ethanol vapour are equally effective means of induction. Maximal expression using soil-grown plants occurred after 5 days of induction. In the majority of transgenics, expression is tightly regulated and reversible. We describe optimal strategies for utilizing the alc system in A. thaliana.  相似文献   

4.
5.
6.
Complementary sense promoter from cotton leaf curl virus (CLCuV) is a novel plant promoter for genetic engineering that could drive high-level foreign gene expression in plant. To determine the optimal promoter sequence for gene expression, CLCuV promoter was deleted from its 5' end to form promoter fragments with five different lengths, and chimeric gus genes were constructed using the promoterdeletion. These vectors were delivered into Agrobacterium and tobacco (Nicotiana tabacum L cv. Xanthi) plants which were transformed by leaf discs method. GUS activity of transgenic plants was measured. The results showed that GUS activities with the promoter deleted to -287 and -271 from the translation initiation site were respectively about five and three times that of full-length promoter. There exists a c/s-element which is important for the expressing activity in phloem from -271 to -176. Deletion from -176 to -141 resulted in a 20-30-fold reduction in GUS activity in leaves with weak activity in leaves and  相似文献   

7.
Summary The response of oilseed rape cultivars to infection with Agrobacterium tumefaciens and A. rhizogenes and the possibility of regenerating genetically transformed oilseed rape plants were examined. The frequency at which Agrobacterium induced galls or hairy-roots on in vitro cultured plants ranged from 10% to 70%, depending on the cultivar. From galls induced by the tumorigenic strain T37, known to be strongly shoot inducing on tobacco, roots developed frequently. Occasionally, shoots formed and some of these produced tumour cell specific nopaline. Attempts to grow the transformed shoots into plants have so far been unsuccessful. Whole plants transformed with Ri-T-DNA, however, were regenerated. These had crinkled leaves and abundant, frequently branching roots that showed reduced geotropism, similar to previously isolated Ri T-DNA transformed tobacco and potato plants. The transformed oilseed rape plants flowered, but failed to form seeds.  相似文献   

8.
9.
10.
11.
Similar to the prostanoid-mediated inflammatory response in mammals, jasmonate-mediated wound response in plant leaves is inhibited by salicylic acid (SA) or acetylsalicylate (aspirin). In tobacco BY-2 cells, expression of the gene for ornithine decarboxylase (ODC) involved in putrescine synthesis is rapidly inducible by methyl jasmonate (MeJA). A nuclear gene for ODC isolated from tobacco, gNtODC-1, was an intron-less gene and MeJA induced the expression of a GUS fusion gene with the gNtODC-1 promoter in transformed tobacco cells. Although SA alone did not induce the expression, 0.2 to 20 microM SA increased the MeJA-induced expression of the fusion gene to about two-fold. A similar increase was observed with aspirin but not with 3- or 4-hydroxybenzoic acids. SA at concentrations up to 200 microM did not inhibit the MeJA-induction of mRNAs for the GUS fusion gene and the endogenous gene for ODC.  相似文献   

12.
The class I -1,3-glucanases are antifungal vacuolar proteins implicated in plant defense that show developmental, hormonal, and pathogenesis-related regulation. The tobacco enzymes are encoded by a small gene family with members derived from ancestors related to the present-day species Nicotiana sylvestris and N. tomentosiformis. We studied the expression in transgenic tobacco plants of a chimeric -glucuronidase (GUS) reporter gene fused to 1.6 kb of upstream sequence of the tobacco class I -1,3-glucanase B (GLB) gene, which is of N. tomentosiformis origin. Expression of the GUS reporter gene and the accumulation of class I -1,3-glucanase and its mRNA showed very similar patterns of regulation. In young seedlings the reporter gene was expressed in the roots. In mature tobacco plants it was preferentially expressed in lower leaves and roots and was induced in leaves by ethylene treatment and by infection with tobacco mosaic virus (TMV). Furthermore, it was down-regulated in cultured leaf discs by combinations of the hormones auxin and cytokinin. Histological studies of GUS activity showed that the GLB promoter shows highly localized expression in roots of seedlings. It is also expressed in a ring of cells around necrotic lesions induced by TMV infection, but not in cells immediately adjacent to the lesions or in the lesions themselves. The results of deletion analyses suggest that multiple positive and negative elements in the GLB promoter regulate its activity. The region from –1452 to –1193 containing two copies of the heptanucleotide AGCCGCC, which is highly conserved in plant-stress and defense-related genes, is necessary for high level expression in leaves. Additional regions important for organ-specific and regulated expression were: –568 to –402 for ethylene induction of leaves; –402 to –211 for expression in lower leaves and cultured leaf discs and for TMV induction of leaves; and –211 to –60 for expression in roots.  相似文献   

13.
It has recently been proposed that acetaldehyde is the physiological inducer of the alc gene system and hence indirectly the activator of the AlcA promoter in Aspergillus nidulans. Here we show that this chemical induces expression of a GUS (beta-D-glucuronidase) reporter under the control of the alc gene system in transgenic potato tubers more rapidly than ethanol allowing tighter control of transgene expression. Furthermore by analysis of metabolite levels we demonstrate that the application of inducer has few effects on metabolism. We propose that this system is therefore ideal for the temporal regulation of important metabolic enzyme activities.  相似文献   

14.
Variability of expression of introduced marker genes was analysed in a large number of tobacco regenerants from anAgrobacterium-mediated transformation. In spite of standardization of sampling, considerable variation of GUS and NPTII expression was observed between individual transformants at different times of analysis and in different parts of the same plant. Organ-specificity of root versus leaf expression conferred by the par promoter from the haemoglobin gene ofParasponia andersonii in front of thegus gene showed a continuous spectrum. GUS expression in roots was found in 128 out of 140 plants; expression in leaves was found in 46 plants, and was always lower than in the corresponding roots. NPTII expression regulated by the nos promoter also showed a continuous spectrum. Expression levels were generally higher in roots than in leaves. Plants with high GUS expression in leaves showed high NPTII activity as well. A positive correlation between the level of NPTII expression and the numbers of integrated gene copies was noted. Chromosomal position effects and physiological determination are suggested as triggers for the variations. The transformed regenerated tobacco plants were largely comparable to clonal variants.  相似文献   

15.
Experiments were done under controlled environment and glasshouse conditions to study the effects of inoculum concentration, leaf age and wetness period on the development of dark leaf and pod spot (Alternaria brussicae) on oilseed rape (Brassica napus). On leaves of potted oilseed rape plants (cv. Bienvenu) inoculated with A. brassicae conidial suspensions, the severity (number of lesions cm-2) of dark leaf spot increased as inoculum concentration increased from 80 to 660 spores ml-1and as leaf age increased from 4 to 14 days. On pods on detached racemes of spring oilseed rape (cv. Starlight), the incidence of dark pod spot (% of pods diseased) increased as inoculum concentration increased from 80 to 104spores ml-1. Increasing inoculum concentration above 104spores ml-1did not increase the incidence but did increase the severity of dark pod spot. A minimum wetness period of 4 h was needed for infection of oilseed rape leaves (cv. Envol) by A. brussicue at 18°C and disease severity increased with increasing wetness period up to 12 h. The length of dry interruptions after 3–8 h of initial wetness affected the severity of dark leaf spot. A second wetness period increased the severity of dark leaf spot if the dry interruption was ≤ 6 h and if the first wetness period was ≤ 8 h. The incubation period of A. brassicae decreased from 3.5 to 2.5 days as inoculum concentration increased from 80 to 660 spores ml-on leaves (cv. Bienvenu) at 17–25°C and from 3.8 to 1.0 day as inoculum concentration increased from 80 to ≥2 ≥ 103spores ml-1on pods (cv. Starlight) at 18°C.  相似文献   

16.
Farnesylation mediates membrane targeting and in vivo activities of several key regulatory proteins such as Ras and Ras-related GTPases and protein kinases in yeast and mammals, and is implicated in cell cycle control and abscisic acid (ABA) signaling in plants. In this study, the developmental expression of a pea protein farnesyl-transferase (FTase) gene was examined using transgenic expression of the β-glucuronidase (GUS) gene fused to a 3.2 kb 5′ upstream sequence of the gene encoding the pea FTase β subunit. Coordinate expression of the GUS transgene and endogenous tobacco FTase β subunit gene in tobacco cell lines suggests that the 3.2 kb region contains the key FTase promoter elements. In transgenic tobacco plants, GUS expression is most prominent in meristematic tissues such as root tips, lateral root primordia and the shoot apex, supporting a role for FTase in the control of the cell cycle in plants. GUS activity was also detected in mature embryos and imbibed embryos, in accordance with a role for FTase in ABA signaling that modulates seed dormancy and germination. In addition, GUS activity was detected in regions that border two organs, e.g. junctions between stems and leaf petioles, cotyledons and hypocotyls, roots and hypocotyls, and primary and secondary roots. GUS is expressed in phloem complexes that are adjacent to actively growing tissues such as young leaves, roots of light-grown seedlings, and hypocotyls of dark-grown seedlings. Both light and sugar (e.g. sucrose) treatments repressed GUS expression in dark-grown seedlings. These expression patterns suggest a potential involvement of FTase in the regulation of nutrient allocation into actively growing tissues.  相似文献   

17.
18.
19.
Xu Y  Yu H  Hall TC 《Plant physiology》1994,106(2):459-467
In rice (Oryza sativa L.), cytosolic triosephosphate isomerase (TPI) is encoded by a single gene. TPI catalyzes a vital step in glycolysis, and RNA blots showed that the tpi gene is expressed in all vegetative tissues (root, culm, and leaves) and in rice suspension cells. No effect of light on expression was detected, but submergence of rice seedlings resulted in elevated levels of TPI mRNA in roots and culms. The 2767-bp 5[prime] upstream sequence of the tpi gene was fused translationally with the [beta]-glucuronidase (gusA) gene, and the resulting construct, TPI-GUS, was found to express constitutive, high levels of GUS activity in transgenic tobacco (Nicotiana tabacum) plants. However, the same construct yielded no GUS activity in stably transformed rice plants, and RNA blots showed that no GUS mRNA could be detected even though stable integration of functional copies of the construct was confirmed by Southern blot and genomic polymerase chain reaction analyses. Transient assays using particle bombardment yielded high levels of GUS expression from the TPI-GUS construct in tobacco leaves, but essentially no expression in rice, barley, or maize leaves. When the first intron of the tpi gene was included in the construct (TPI-int1-GUS), transient GUS activity was routinely obtained in rice leaves, revealing that the first intron of the rice tpi gene is crucial for its expression in rice. TPI-int1-GUS also directed transient GUS expression in maize and barley leaves, but little or no activity was obtained from this construct in tobacco, tomato, or soybean leaves. These results with the rice tpi promoter are in accordance with mounting evidence that differences in gene expression exist between monocots and dicots.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号