首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apigenin is a plant-derived flavanoid that has significant promise as a skin cancer chemopreventive agent. In the present study, we examine the mechanism whereby apigenin regulates normal human keratinocyte differentiation. Expression of involucrin (hINV), a marker of keratinocyte differentiation, is increased by differentiating agents via a protein kinase Cdelta (PKCdelta), Ras, MEKK1, MEK3 cascade that increases AP1 factor level and AP1 factor binding to DNA elements in the hINV promoter. We show that apigenin inhibits this response. Apigenin suppresses the 12-O-tetradeconylphorbol-13-acetate-dependent increase in AP1 factor expression and binding to the hINV promoter and the increase in hINV promoter activity. Apigenin also inhibits the increase in promoter activity observed following overexpression of PKCdelta, constitutively active Ras, or MEKK1. The suppression of PKCdelta activity is associated with reduced phosphorylation of PKCdelta-Y311. The physiological importance of this phosphorylation event was confirmed by showing that the PKCdelta phosphorylation-defective mutant, PKCdelta-Y311F, is less able to increase hINV promoter activity. Activation of hINV promoter activity by the green tea polyphenol, (-)-epigellocathecin-3-gallate, is also inhibited by apigenin, suggesting that the two chemopreventive agents can produce opposing actions in keratinocytes. Additional studies show that the apigenin-dependent suppression of differentiation is associated with reduced cell proliferation but that there is no evidence of apoptosis.  相似文献   

2.
Antioxidants are important candidate agents for the prevention of disease. However, the possibility that different antioxidants may produce opposing effects in tissues has not been adequately explored. We have reported previously that (-)-epigallocatechin-3-gallate (EGCG), a green tea polyphenol antioxidant, stimulates expression of the keratinocyte differentiation marker, involucrin (hINV), via a Ras, MEKK1, MEK3, p38delta signaling cascade (Balasubramanian, S., Efimova, T., and Eckert, R. L. (2002) J. Biol. Chem. 277, 1828-1836). We now show that EGCG activation of this pathway results in increased CCAAT/enhancer-binding protein (C/EBPalpha and C/EBPbeta) factor level and increased complex formation at the hINV promoter C/EBP DNA binding site. This binding is associated with increased promoter activity. Mutation of the hINV promoter C/EBP binding site eliminates the regulation as does expression of GADD153, a dominant-negative C/EBP factor. In contrast, a second antioxidant, curcumin, inhibits the EGCG-dependent promoter activation. This is associated with inhibition of the EGCG-dependent increase in C/EBP factor level and C/EBP factor binding to the hINV promoter. Curcumin also inhibits the EGCG-dependent increase in endogenous hINV levels. The curcumin-dependent suppression of C/EBP factor level is inhibited by treatment with the proteasome inhibitor MG132, suggesting that the proteasome function is required for curcumin action. We conclude that curcumin and EGCG produce opposing effects on involucrin gene expression via regulation of C/EBP factor function. The observation that two antioxidants can produce opposite effects is an important consideration in the context of therapeutic antioxidant use.  相似文献   

3.
4.
5.
6.
7.
Many components that are derived from medicinal or dietary plants possess potential chemopreventive properties. Curcumin, a yellow coloring agent from turmeric (Curcuma longa Linn, Zingiberaceae), possesses strong antimutagenic and anticarcinogenic activities. In this study, we have found that curcumin inhibits the 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced nuclear factor kB (NF-kappaB) activation by preventing the degradation of the inhibitory protein IkBalpa; and the subsequent translocation of the p65 subunit in cultured human promyelocytic leukemia (HL-60) cells. Alternatively, curcumin repressed the TPA-induced activation of NF-kappaB through direct interruption of the binding of NF-kappaB to its consensus DNA sequences. Likewise, the TPA-induced DNA binding of the activator protein-1 (AP-1) was inhibited by curcumin pretreatment.  相似文献   

8.
Curcumin is a major component of the Curcuma species, which is commonly used as a yellow coloring and flavoring agent in foods. Curcumin has shown anti-carcinogenic activity in animals as indicated by its ability to block colon tumor initiation by azoxymethane and skin tumor promotion induced by phorbol ester TPA. Recently, curcumin has been considered by oncologists as a potential third generation cancer chemopreventive agent, and clinical trials using it have been carried out in several laboratories. Curcumin possesses anti-inflammatory activity and is a potent inhibitor of reactive oxygen-generating enzymes, such as lipoxygenase/cyclooxygenase, xanthine dehydrogenase/oxidase and inducible nitric oxide synthase. Curcumin is also a potent inhibitor of protein kinase C, EGF-receptor tyrosine kinase and IkappaB kinase. In addition, curcumin inhibits the activation of NFkappaB and the expression of c-jun, c-fos, c-myc and iNOS. It is proposed that curcumin may suppress tumor promotion by blocking signal transduction pathways in the target cells. Curcumin was first biotransformed to dihydrocurcumin and tetrahydrocurcumin, and these compounds were subsequently convened into monoglucuronide conjugates. The experimental results suggest that curcumin-glucuronide, dihydrocurcumin-glucuronide, tetrahydrocurcumin-glucuronide and tetrahydrocurcumin are major metabolites of curcumin in mice.  相似文献   

9.
10.
p38 MAPK isoforms are important in the regulation of a variety of cellular processes. Among the four described p38 isoforms, p38 alpha, beta, and delta are expressed in keratinocytes (Dashti, S. R., Efimova, T., and Eckert, R. L. (2001) J. Biol. Chem. 276, 8059-8063). However, very little is known about how individual p38 isoforms regulate keratinocyte function. In the present study, we use okadaic acid (OA) as a tool to study the role of p38 MAPKs as regulators of keratinocyte differentiation. We demonstrate that OA activates p38 delta but not other p38 isoforms. p38 delta activation is increased as early as 0.5 h after OA addition, and activity is maximal at 8 and 24 h. ERK1 and ERK2 activity are reduced on an identical time course. We show that p38 delta forms a complex with ERK1/2, and overexpression of p38 delta inhibits ERK1/2 activity without reducing ERK1/2 level. Thus, p38 delta may directly suppress ERK1/2 activity. Additional studies show that p38 delta is expressed in the epidermis, suggesting a role for p38 delta in regulating differentiation. To evaluate its function, we show that increased p38 delta activity is associated with increased levels of AP1 and CAATT enhancer binding protein factors, increased binding of these factors to the involucrin (hINV) promoter, and increased expression. Moreover, these responses are maintained in the presence of SB203580, an agent that inhibits p38 alpha and beta, further suggesting a central role for the p38 delta isoform. Dominant-negative p38 also inhibits these responses. These unique observations suggest that p38 delta is the major p38 isoform driving suprabasal hINV gene expression and that p38 delta directly regulates ERK1/2 activity via formation of a p38 delta-ERK1/2 complex.  相似文献   

11.
12.
13.
14.
Curcumin is a well-known component of the cook seasoning and traditional herb turmeric (Curcuma longa), which has been reported to prevent obesity. However, the mechanism still remains to be determined. In this study, curcumin is found to be an effective inhibitor of fatty acid synthase (FAS), and its effects on adipocytes are further evaluated. Curcumin shows both fast-binding and slow-binding inhibitions to FAS. Curcumin inhibits FAS with an IC?? value of 26.8 μM, noncompetitively with respect to NADPH, and partially competitively against both substrates acetyl-CoA and malonyl-CoA. This suggests that the malonyl/acetyl transferase domain of FAS possibly is the main target of curcumin. The time-dependent inactivation shows that curcumin inactivates FAS with two-step irreversible inhibition, a specific reversible binding followed by an irreversible modification by curcumin. Like other classic FAS inhibitors, curcumin prevents the differentiation of 3T3-L1 cells, and thus represses lipid accumulation. In the meantime, curcumin decreases the expression of FAS, down-regulates the mRNA level of PPARγ and CD36 during adipocyte differentiation. Curcumin is reported here as a novel FAS inhibitor, and it suppresses adipocyte differentiation and lipid accumulation, which is associated with its inhibition of FAS. Hence, curcumin is considered to be having potential application in the prevention of obesity.  相似文献   

15.
Numerous studies have indicated that inflammatory cytokines play a major role in osteoclastogenesis, leading to the bone resorption that is frequently associated with cancers and other diseases. Gene deletion studies have shown that receptor activator of NF-kappaB ligand (RANKL) is one of the critical mediators of osteoclastogenesis. How RANKL mediates osteoclastogenesis is not fully understood, but an agent that suppresses RANKL signaling has potential to inhibit osteoclastogenesis. In this report, we examine the ability of curcumin (diferuloylmethane), a pigment derived from turmeric, to suppress RANKL signaling and osteoclastogenesis in RAW 264.7 cells, a murine monocytic cell line. Treatment of these cells with RANKL activated NF-kappaB, and preexposure of the cells to curcumin completely suppressed RANKL-induced NF-kappaB activation. Curcumin inhibited the pathway leading from activation of IkappaBalpha kinase and IkappaBalpha phosphorylation to IkappaBalpha degradation. RANKL induced osteoclastogenesis in these monocytic cells, and curcumin inhibited both RANKL- and TNF-induced osteoclastogenesis and pit formation. Curcumin suppressed osteoclastogenesis maximally when added together with RANKL and minimally when it was added 2 days after RANKL. Whether curcumin inhibits RANKL-induced osteoclastogenesis through suppression of NF-kappaB was also confirmed independently, as RANKL failed to activate NF-kappaB in cells stably transfected with a dominant-negative form of IkappaBalpha and concurrently failed to induce osteoclastogenesis. Thus overall these results indicate that RANKL induces osteoclastogenesis through the activation of NF-kappaB, and treatment with curcumin inhibits both the NF-kappaB activation and osteoclastogenesis induced by RANKL.  相似文献   

16.
Curcumin blocks activation of pancreatic stellate cells   总被引:9,自引:0,他引:9  
Activated pancreatic stellate cells (PSCs) play a pivotal role in the pathogenesis of pancreatic fibrosis and inflammation. Inhibition of activation and cell functions of PSCs is a potential target for the treatment of pancreatic fibrosis and inflammation. The polyphenol compound curcumin is the yellow pigment in curry, and has anti-inflammatory and anti-fibrotic properties. We here evaluated the effects of curcumin on the activation and cell functions of PSCs. PSCs were isolated from rat pancreas tissue and used in their culture-activated, myofibroblast-like phenotype unless otherwise stated. The effects of curcumin on proliferation, alpha-smooth muscle actin gene expression, monocyte chemoattractant protein (MCP)-1 production, and collagen expression were examined. The effect of curcumin on the activation of freshly isolated cells in culture was also assessed. Curcumin inhibited platelet-derived growth factor (PDGF)-induced proliferation, alpha-smooth muscle actin gene expression, interleukin-1beta- and tumor necrosis factor (TNF)-alpha-induced MCP-1 production, type I collagen production, and expression of type I and type III collagen genes. Curcumin inhibited PDGF-BB-induced cyclin D1 expression and activation of extracellular signal-regulated kinase (ERK). Curcumin inhibited interleukin-1beta- and TNF-alpha-induced activation of activator protein-1 (AP-1) and mitogen-activated protein (MAP) kinases (ERK, c-Jun N-terminal kinase (JNK), and p38 MAP kinase), but not of nuclear factor-kappaB (NF-kappaB). In addition, curcumin inhibited transformation of freshly isolated cells to myofibroblast-like phenotype. In conclusion, curcumin inhibited key cell functions and activation of PSCs.  相似文献   

17.
A signaling cascade that includes protein kinase C (PKC), Ras, and MEKK1 regulates involucrin (hINV) gene expression in epidermal keratinocytes (Efimova, T., LaCelle, P., Welter, J. F., and Eckert, R. L. (1998) J. Biol. Chem. 273, 24387-24395 and Efimova, T., and Eckert, R. L. (2000) J. Biol. Chem. 275, 1601-1607). Because signal transfer downstream of MEKK1 may involve several MAPK kinases (MEKs), it is important to evaluate the regulatory role of each MEK isoform. In the present study we evaluate the role of MEK6 in transmitting this signal. Constitutively active MEK6 (caMEK6) increases hINV promoter activity and increases endogenous hINV levels. The caMEK6-dependent increase in gene expression is inhibited by the p38 MAPK inhibitor, SB203580, and is associated with a marked increase in p38alpha MAPK activity; JNK and ERK kinases are not activated. In addition, hINV gene expression is inhibited by dominant-negative p38alpha and increased when caMEK6 and p38alpha are co-expressed. caMEK6 also activates p38delta, but p38delta inhibits the caMEK6-dependent activation. These results suggest that MEK6 increases hINV gene expression by regulating the balance between activation of p38alpha, which increases gene expression, and p38delta, which decreases gene expression.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号