首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolutionary development of highly organized species is attained through an increase in average survival of individuals, whereas the evolution of primitive species involves only an increase in fecundity (Zavadsky, 1968). However, in population genetics, survival (or ecological resistance) and fecundity are regarded as components of a single character, fitness. Employment of the notion of fitness, which lacks a strict definition, hinders understanding of the mechanism of progressive evolution as the process that enhances ecological resistance of organisms. The notion of fitness also hinders understanding the role of genetic exchange, since the primary advantage of genetic recombination and sexual reproduction apparently is producing of progeny with high ecological resistance rather than with high genetic diversity as such. Thus, the regular genetic exchange ensures restoration of the level of ecological resistance characteristic for the species, and on the macroevolutionary scale leads to the formation of new genomes and new species with high ecological resistance.  相似文献   

2.
Sukhodolets VV 《Genetika》2005,41(10):1322-1330
The evolutionary development of highly organized species is attained through an increase in average survival of individuals, whereas the evolution of primitive species involves only an increase in fecundity (Zavadsky, 1958, 1961). However, in population genetics, survival (or ecological resistance) and fecundity are regarded as components of a single character, fitness. Employment of the notion of fitness, which lacks a strict definition, hinders understanding of the mechanism of progressive evolution as the process that enhances ecological resistance of organisms. The notion of fitness also exacerbates understanding the role of genetic exchange, since the primary advantage of genetic recombination and sexual reproduction apparently is producing of progeny with high ecological resistance rather than with high genetic diversity as such. Thus, the regular genetic exchange ensures restoration of the level of ecological resistance characteristic for the species, and on the macroevolutionary scale leads to the formation of new genomes and new species with high ecological resistance.  相似文献   

3.
The possibility of the existence of an organism under different environmental conditions is determined by its ecological stability. This parameter can be expressed as the product of the average life span corresponding species and the probability of an organism's participation in reproduction. If ecological conditions are not substantially altered, regulatory selection provides an increase in fitness of an organism in a certain direction of adaptation. It is supposed that the process of regulatory selection is accompanied by the accumulation of mutations occurring in regulatory genes and mutations in regulatory regions of structural genes which correct the effect of the former mutations. An alteration in ecological stability occurs when the conditions of population existence are changed and is usually accompanied by a decrease in the fitness level earlier achieved. Thus, an increase in organisms' ecological stability is achieved by hybridization between populations of different origin and is accompanied by a decrease in fitness due to outbreeding depression. Under conditions of inbreeding, ecological stability is decreased due to the segregation, in the homozygous state, of recessive alleles of adaptive genes that have not yet reached the stage of evolutionary fixation. Diploidy is a factor allowing organisms to improve their ecological stability in every new generation.  相似文献   

4.
The genetic theory of natural selection proposed by Fisher takes into account differential reproduction success of organisms, which may be estimated by using the Malthusian parameter as fitness. However, the minimum possible value of this parameter depends on ecological stability of an organism, which determines the probability of the survival and participation in reproduction for each viable offspring. In the course of vertical evolution, leading to an increase in the level of biological organization, ecological stability of organisms increases, and this might be accompanied by a decrease in their fitness. In the macroevolutionary process, alterations in ecological stability of organisms, including those responsible for an increase in the level of biological organization, are basic and primary changes whereas alterations in fitness are additional and secondary.  相似文献   

5.
Sukhodolets VV 《Genetika》2001,37(2):165-174
The genetic theory of natural selection proposed by Fisher takes into account differential reproduction success of organisms, which may be estimated by using the Malthusian parameter as fitness. However, the minimum possible value of this parameter depends on ecological stability of an organism, which determines the probability of the survival and participation in reproduction for each viable offspring. In the course of vertical evolution, leading to an increase in the level of biological organization, ecological stability of organisms increases, and this might be accompanied by a decrease in their fitness. In the macroevolutionary process, alterations in ecological stability of organisms, including those responsible for an increase in the level of biological organization, are basic and primary changes whereas alterations in fitness are additional and secondary.  相似文献   

6.
Evolutionary transitions require the organization of genetic variation at two (or more) levels of selection so that fitness heritability may emerge at the new level. In this article, we consider the consequences for fitness variation and heritability of two of the main modes of reproduction used in multicellular organisms: vegetative reproduction and single-cell reproduction. We study a model where simple cell colonies reproduce by fragments or propagules of differing size, with mutations occurring during colony growth. Mutations are deleterious at the colony level but can be advantageous or deleterious at the cell level ("selfish" or "uniformly deleterious" mutants). Fragment size affects fitness in two ways: through a direct effect on adult group size (which in turn affects fitness) and by affecting the within- and between-group variances and opportunity for selection on mutations at the two levels. We show that the evolution of fragment size is determined primarily by its direct effects on group size except when mutations are selfish. When mutations are selfish, smaller propagule size may be selected, including single-cell reproduction, even though smaller propagule size has a direct fitness cost by virtue of producing smaller organisms, that is, smaller adult cell groups.  相似文献   

7.
The role of genetic recombinations is considered in the context of ecological stability of organisms. The ecological stability is taken as a special notion distinct from fitness in its original sense as the Maltusian parameter according to R. Fisher. The genetic exchange within the species provides the recovery of a species specific level of ecological stability that is lowered in particular individuals as a result of the accumulation of mutations in microevolutionary processes. It is supposed that the accumulation of the mutations that decrease organisms' ecological stability leads to the action of truncated selection. This type of selection explains the advantage of recombination in the model of A.S. Kondrashov (1982). In the evolving species, ecological stability is gradually increasing in the process of evolution as a result of hybridization between the narrow-specialized races. Genetic recombinations provide a constant DNA homogenization within the species and, therefore, the species integrity as an elementary structure responsible for the preservation and rise in the level of ecological stability of organisms in evolving lineages.  相似文献   

8.
Horizontal genetic transfer (HGT) has played an important role in bacterial evolution at least since the origins of the bacterial divisions, and HGT still facilitates the origins of bacterial diversity, including diversity based on antibiotic resistance. Adaptive HGT is aided by unique features of genetic exchange in bacteria such as the promiscuity of genetic exchange and the shortness of segments transferred. Genetic exchange rates are limited by the genetic and ecological similarity of organisms. Adaptive transfer of genes is limited to those that can be transferred as a functional unit, provide a niche-transcending adaptation, and are compatible with the architecture and physiology of other organisms. Horizontally transferred adaptations may bring about fitness costs, and natural selection may ameliorate these costs. The origins of ecological diversity can be analyzed by comparing the genomes of recently divergent, ecologically distinct populations, which can be discovered as sequence clusters. Such genome comparisons demonstrate the importance of HGT in ecological diversification. Newly divergent populations cannot be discovered as sequence clusters when their ecological differences are coded by plasmids, as is often the case for antibiotic resistance; the discovery of such populations requires a screen for plasmid-coded functions. This paper reviews the features of bacterial genetics that allow HGT, the similarities between organisms that foster HGT between them, the limits to the kinds of adaptations that can be transferred, and amelioration of fitness costs associated with HGT; the paper also reviews approaches to discover the origins of new, ecologically distinct bacterial populations and the role that HGT plays in their founding.  相似文献   

9.
Sukhodolets VV 《Genetika》1998,34(12):1589-1596
Ecological potential of an individual can be defined as its viability in the broad sense including the ability to reproduce in various environments. From the biological viewpoint, ecological potential as a fundamental property of an organism is more important than fitness in the genetic sense, which is estimated as the relative rate of reproduction. In essence, fitness reflects the level of implementation of the biological potential. In the process of evolution, regulatory selection results in an increase of fitness: selected forms reproduce more successfully as the population size increases. By contrast, individuals with high ecological potential are more advantageous when the population size decreases, because the probability of their survival in adverse environments is high. Thus, high levels of fitness and ecological potential are achieved via operation of different types of selection.  相似文献   

10.
Genome sequencing has revealed that horizontal gene transfer (HGT) is a major evolutionary process in bacteria. Although it is generally assumed that closely related organisms engage in genetic exchange more frequently than distantly related ones, the frequency of HGT among distantly related organisms and the effect of ecological relatedness on the frequency has not been rigorously assessed. Here, we devised a novel bioinformatic pipeline, which minimized the effect of over-representation of specific taxa in the available databases and other limitations of homology-based approaches by analyzing genomes in standardized triplets, to quantify gene exchange between bacterial genomes representing different phyla. Our analysis revealed the existence of networks of genetic exchange between organisms with overlapping ecological niches, with mesophilic anaerobic organisms showing the highest frequency of exchange and engaging in HGT twice as frequently as their aerobic counterparts. Examination of individual cases suggested that inter-phylum HGT is more pronounced than previously thought, affecting up to ∼16% of the total genes and ∼35% of the metabolic genes in some genomes (conservative estimation). In contrast, ribosomal and other universal protein-coding genes were subjected to HGT at least 150 times less frequently than genes encoding the most promiscuous metabolic functions (for example, various dehydrogenases and ABC transport systems), suggesting that the species tree based on the former genes may be reliable. These results indicated that the metabolic diversity of microbial communities within most habitats has been largely assembled from preexisting genetic diversity through HGT and that HGT accounts for the functional redundancy among phyla.  相似文献   

11.
Most biologists implicitly define an individual organism as "one genome in one body." This definition is based on physiological and genetic criteria, but it is problematic for colonial organisms. We propose a definition based instead on the evolutionary criteria of alignment of fitness, export of fitness by germ-soma specialization, and adaptive functional organization. We consider how these concepts apply to various putative individual organisms. We conclude that complex multicellular organisms and colonies of eusocial insects satisfy these three criteria, but that, in most cases (with at least one notable exception), colonies of modular organisms and genetic chimeras do not. While species do not meet these criteria, they may meet the criteria for a broader concept--that of an evolutionary individual--and sexual reproduction may be a species-level exaptation for enhancing evolvability. We also review the costs and benefits of internal genetic heterogeneity within putative individuals, demonstrating that high relatedness is neither a necessary nor a sufficient condition for individuality, and that, in some cases, genetic variability may have adaptive benefits at the level of the whole.  相似文献   

12.
Henry H Q Heng 《Génome》2007,50(5):517-524
Resolving the persistence of sexual reproduction despite its overwhelming costs (known as the paradox of sex) is one of the most persistent challenges of evolutionary biology. In thinking about this paradox, the focus has traditionally been on the evolutionary benefits of genetic recombination in generating offspring diversity and purging deleterious mutations. The similarity of pattern between evolution of organisms and evolution among cancer cells suggests that the asexual process generates more diverse genomes owing to less controlled reproduction systems, while sexual reproduction generates more stable genomes because the sexual process can serve as a mechanism to "filter out" aberrations at the chromosome level. Our reinterpretation of data from the literature strongly supports this hypothesis. Thus, the principal consequence of sexual reproduction is the reduction of drastic genetic diversity at the genome or chromosome level, resulting in the preservation of species identity rather than the provision of evolutionary diversity for future environmental challenges. Genetic recombination does contribute to genetic diversity, but it does so secondarily and within the framework of the chromosomally defined genome.  相似文献   

13.
Several important biological phenomena, including genetic recombination and sexual reproduction, could have evolved to counteract genome contamination by deleterious mutations. This postulate would be especially relevant if it were shown that deleterious mutations interact in such a way that their individual negative effects are reinforced by each other. The hypothesis of synergism can be tested experimentally by crossing organisms bearing deleterious mutations and comparing the fitness of the parents and their progeny. The present study used laboratory strains of the budding yeast burdened with mutations resulting from absence of a major DNA mismatch repair function. Only in one, or possibly two, crosses out of eight did fitness of the progeny deviate from that of their parents in a direction indicating synergism. Furthermore, the distributions of progeny fitness were not skewed as would be expected if strong interactions were present. The choice of experimental material ensured that genetic recombination was extensive, all four meiotic products were available for fitness assays, and that the mutations were probably numerous. Despite this generally favourable experimental setting, synergism did not appear to be a dominating force shaping fitness of yeast containing randomly generated mutations.  相似文献   

14.
Asexual reproduction could offer up to a two‐fold fitness advantage over sexual reproduction, yet higher organisms usually reproduce sexually. Even in facultatively parthenogenetic species, where both sexual and asexual reproduction is sometimes possible, asexual reproduction is rare. Thus, the debate over the evolution of sex has focused on ecological and mutation‐elimination advantages of sex. An alternative explanation for the predominance of sex is that it is difficult for an organism to accomplish asexual reproduction once sexual reproduction has evolved. Difficulty in returning to asexuality could reflect developmental or genetic constraints. Here, we investigate the role of genetic factors in limiting asexual reproduction in Nauphoeta cinerea, an African cockroach with facultative parthenogenesis that nearly always reproduces sexually. We show that when N. cinerea females do reproduce asexually, offspring are genetically identical to their mothers. However, asexual reproduction is limited to a nonrandom subset of the genotypes in the population. Only females that have a high level of heterozygosity are capable of parthenogenetic reproduction and there is a strong familial influence on the ability to reproduce parthenogenetically. Although the mechanism by which genetic variation facilitates asexual reproduction is unknown, we suggest that heterosis may facilitate the switch from producing haploid meiotic eggs to diploid, essentially mitotic, eggs.  相似文献   

15.
Sexual reproduction is one of the most taxonomically conserved traits, yet sex‐determining mechanisms (SDMs) are quite diverse. For instance, there are numerous forms of environmental sex determination (ESD), in which an organism’s sex is determined not by genotype, but by environmental factors during development. Important questions remain regarding transitions between SDMs, in part because the organisms exhibiting unique mechanisms often make difficult study organisms. One potential solution is to utilize mutant strains in model organisms better suited to answering these questions. We have characterized two such strains of the model nematode Caenorhabditis elegans. These strains harbour temperature‐sensitive mutations in key sex‐determining genes. We show that they display a sex ratio reaction norm in response to rearing temperature similar to other organisms with ESD. Next, we show that these mutations also cause deleterious pleiotropic effects on overall fitness. Finally, we show that these mutations are fundamentally different at the genetic sequence level. These strains will be a useful complement to naturally occurring taxa with ESD in future research examining the molecular basis of and the selective forces driving evolutionary transitions between sex determination mechanisms.  相似文献   

16.
Sukhodelets VV 《Genetika》2002,38(7):881-893
Ecological stability of an organism, which determines the possibility of its existence under changing environmental conditions, can be estimated as the probability of the participation of each viable offspring in reproduction. In developing species, the periodic rises and falls in the population size (Chetverikov's "waves of life") can lead to changes in ecological stability, which is of macroevolutionary importance. Under conditions of isolation such changes generally result in specialization of intraspecific races but they could then lead to an increase in ecological stability of hybrid forms. Ecological stability of prosperous species increases during macroevolution due to combinative recombination between specialized intraspecific races or closely related species.  相似文献   

17.
施永彬  李钧敏  金则新 《生态学报》2012,32(18):5846-5858
生态基因组学是一个整合生态学、分子遗传学和进化基因组学的新兴交叉学科。生态基因组学将基因组学的研究手段和方法引入生态学领域,通过将群体基因组学、转录组学、蛋白质组学等手段与方法将个体、种群及群落、生态系统不同层次的生态学相互作用整合起来,确定在生态学响应及相互作用中具有重要意义的关键的基因和遗传途径,阐明这些基因及遗传途径变异的程度及其生态和进化后果的特征,从基因水平探索有机体响应天然环境(包括生物与非生物的环境因子)的遗传学机制。生态基因组学的研究对象可以分为模式生物与非模式生物两大类。拟南芥、酿酒酵母等模式生物在生态基因组学领域发挥了重要作用。随着越来越多基因组学技术的开发与完善,越来越多的非模式生物生态基因组学的研究将为生态学的发展提供重要的理论与实践依据。生态基因组学最核心的方法包括寻找序列变异、研究基因差异表达和分析基因功能等方法。生态基因组学已广泛渗透到生态学的相关领域中,将会在生物对环境的响应、物种间的相互作用、进化生态学、全球变化生态学、入侵生态学、群落生态学等研究领域发挥更大的作用。  相似文献   

18.
Bacteria exchange genes rarely but are promiscuous in the choice of their genetic partners. Inter-specific recombination has the advantage of increasing genetic diversity and promoting dissemination of novel adaptations, but suffers from the negative effect of importing potentially harmful alleles from incompatible genomes. Bacterial species experience a degree of 'sexual isolation' from genetically divergent organisms - recombination occurs more frequently within a species than between species. In this review, I outline the sources and mechanisms of sexual isolation within the context of selective pressures acting on different types of recombination events.  相似文献   

19.
Theory predicts that partially asexual organisms may make the “best of both worlds”: for the most part, they avoid the costs of sexual reproduction, while still benefiting from an enhanced efficiency of selection compared to obligately asexual organisms. There is, however, little empirical data on partially asexual organisms to test this prediction. Here we examine patterns of nucleotide diversity at eight nuclear loci in continentwide samples of two species of cyclically parthenogenetic Daphnia to assess the effect of partial asexual reproduction on effective population size and amount of recombination. Both species have high nucleotide diversities and show abundant evidence for recombination, yielding large estimates of effective population sizes (300,000–600,000). This suggests that selection will act efficiently even on mutations with small selection coefficients. Divergence between the two species is less than one-tenth of previous estimates, which were derived using a mitochondrial molecular clock. As the two species investigated are among the most distantly related species of the genus, this suggests that the genus Daphnia may be considerably younger than previously thought. Daphnia has recently received increased attention because it is being developed as a model organism for ecological and evolutionary genomics. Our results confirm the attractiveness of Daphnia as a model organism, because the high nucleotide diversity and low linkage disequilibrium suggest that fine-scale mapping of genes affecting phenotypes through association studies should be feasible.  相似文献   

20.
Ecological stability of an organism, which determines the possibility of its existence under changing environmental conditions, can be estimated as the probability of the participation of each viable offspring in reproduction. In developing species, the periodic rises and falls in the population size (Chetverikov's waves of life) can lead to changes in ecological stability, which is of macroevolutionary importance. Under conditions of isolation such changes generally result in specialization of intraspecific races but they could then lead to an increase in ecological stability of hybrid forms. Ecological stability of prosperous species increases during macroevolution due to combinative recombination between specialized intraspecific races or closely related species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号