共查询到20条相似文献,搜索用时 62 毫秒
1.
采用在位(in vivo) 胞内记录技术,研究了单眼视觉剥夺猫外膝体(LGN) 神经元的双眼反应特性(binocularity) , 结果发现单眼剥夺猫外膝体几乎所有的双眼反应神经元都对非优势眼的闪烁光斑刺激有不同程度的反应,并且剥夺层和非剥夺层神经元在反应特性上没有明显差异。但是,与非剥夺层神经元相比,几乎没有剥夺层的神经元能对非优势眼的正弦移动光栅刺激起反应,并受其空间频率的调制。结果提示皮层下外膝体水平上这种双眼反应的某些精细反应性质可能与后天视觉经验的修饰有关,并可能受皮层反馈输入的影响。 相似文献
2.
记录和测定了视觉剥夺猫(dark-rearedcats)外膝体344个细胞的方位调谐等感受野特性,多数细胞(82%)具有方位敏感性(Bias>0.1)。最优方位的分布与正常猫类似,偏向于水平方位,但分布特性强于正常猫。与正常猫类似,视觉剥夺猫外膝体细胞的最优方位与该细胞感受野在视网膜上的位置有关,偏向平行于视网膜中心区与感受野中心的连线(向心线);外膝体内位置相邻近的细胞具有相近的最优方位,亦呈现初步有序排列。结果表明:外膝体细胞最优方位的分布特性与后天视觉经验无关而可能来源于遗传因素。 相似文献
3.
幼猫单眼视剥夺和反缝过程中显示的双眼竞争机制 总被引:3,自引:0,他引:3
本研究以光栅为刺激所同时产生的图形视觉诱发电位和图形视网膜电图为指标,测定了单眼视剥夺和缝的新生幼猫个体在发育不同阶段的空间频率调谐曲线,并与同龃正常猫,成年正常猫进行了比较研究。结果显示,在0.12-1.5c/d空间频率范围内,正常幼猫单独刺激其左眼和右眼所驱动的P-VEP振幅相近,但都明显地比双眼驱动的为小。在单眼剥夺的幼猫,由剥夺眼所驱动的P-VEP振幅大幅度下降,健康眼所驱动的P-VEP则 相似文献
4.
猫外膝体神经元非寻常的方位调谐特性──Ⅱ.在去视皮层猫和视觉剥夺猫(Dark-reared cats)的研究 总被引:1,自引:0,他引:1
以移动的正弦光栅作为刺激,用玻璃微电极记录以冰冻法毁损皮层17、18、19区和外侧上雪氏回区后的猫外膝体的单细胞反应,测定了579个细胞的方位调谐特性,另外还在视觉剥夺猫外膝体测定了344个细胞的方位调谐特性,与正常猫相似,去视以猫和视觉剥夺猫外膝体的少数细胞具有非寻常的方位调谐特性,包括具蝴蝶形调谐曲线的方位调谐特性、双调谐的方位调谐特性和最优方位随刺激空间的不同而变化的方位调谐特性。结果表明外 相似文献
5.
用免疫细胞化学技术观察了单眼剥夺后金黄地鼠视觉中枢GABA神经元分布的变化。结果表明:单眼剥夺后,金黄地鼠视皮层和上丘的GABA阳性神经元暂时性增多,但剥夺后六个月,其数目显著减少。在单眼剥夺前和剥夺后侧膝体中GABA阳性神经元数目没有明显差异。剥夺眼对侧视皮层GABA阳性神经元数比剥夺眼同侧视皮层GABA神经元数目少。单眼剥夺后视觉中枢GABA神经元类型及形态与剥夺前没有差别。晚期单眼剥夺也能引起视觉中枢GABA神经元数量和分布的变化。以上结果表明,单眼剥夺后视觉中枢抑制神经元的结构发生了变化。 相似文献
6.
猫外膝体细胞和视网膜神经节细胞对正弦调制光刺激反应的相位特性 总被引:1,自引:1,他引:1
记录了猫外膝体细胞和视交叉纤维对正弦调制光点刺激的反应,作成反应时间直方图(PSTH)。用博里叶分析方法测量不同时间频率下反应的基波相位,作相位-频率特性曲线(PFC)。在暗适应条件下用锥系统的阈下刺激分离出杆系统的反应,这时外膝体细胞的相-频特性为一条负斜率的直线。由斜率所推算的潜伏期平均为81ms。在间视条件下,用 Stiles的二色阈法,分离出锥系统的反应,在这种情况下,相-频特性出现一个十分明显的转折。低频段回归线所对应的潜伏期平均为 107ms,高频段为 39ms。用同样方法分析了神经节细胞(视交叉纤维)的相位-频率特性,结果与外膝体细胞相似,说明与锥系统及杆系统活动有关的时间频率通道在视网膜就已经形成。 相似文献
7.
以移动的正弦光栅作为刺激,用玻璃微电极记录以冰冻法毁损皮层17、18、19区和外侧上雪氏回(LS)区后的猫外膝体的单细胞反应,测定了了579个细胞的方位调谐特性.另外还在视觉剥夺猫外膝体测定了344个细胞的方位调谐特性.与正常猫相似,去视皮层猫和视觉剥夺猫外膝体的少数细胞(约占10%)具有非寻常的方位调谐特性,包括具蝴蝶形调谐曲线的方位调谐特性、双调谐(Bimodal)的方位调谐特性和最优方位随刺激空间频率的不同而变化的方位调谐特性。结果表明,外膝体的非寻常的方位调谐特性并非主要由皮层下行投射所致,而是主要与先天遗传因素有关。 相似文献
8.
目的比较正常组、模型组及对照组的图形视觉诱发电位(PVEP)和扫描视觉诱发电位(SVEP)视力,研究各组的视觉电生理表现,探讨单眼睑缝合1周是否可以建立形觉剥夺性弱视模型。方法分析三组PVEP的波形变化、潜时及完成一次诱发反应的时间;比较各组由SVEP得出的客观视力。结果①正常组PVEP由2个波峰组成“M型”(正向波向上),模型组及对照组出现波的分离—波形由多个波组成,而且完成一次反应的时间延长。②缝合侧的N75延迟,SVEP视力较正常组差且差别有统计学意义。③对照组未缝合侧视力恢复到正常水平而缝合侧视力仍差且与正常组有统计学差异。结论短期形觉剥夺的视觉电生理变化是弱视猫的一种表现,单眼睑缝合1周即可建立形觉剥夺性弱视猫的模型。 相似文献
9.
10.
11.
Kinetics of the low threshold T-type Ca2+ channel is studied with single electrode voltage damp technique on brain slices of the cat lateral geniculate nucleus (LGN). Space damp is dramatically improved by blocking various K+ and Na+ channels, decreasing Ca2+ current and selecting proper holding potentials. Results from this study are similar to those obtained from acutely dissociated LGN neurons of the rat, indicating that the kinetics of T-Ca2+ channels of the cat LGN neurons is the same as that of the rat LGN. The result reported previously on the cat LGN may result from a defect in space damp. 相似文献
12.
Summary Synaptic junctions are found in all parts of the nucleus, being almost as densely distributed between cell laminae as within these laminae.In addition to the six classical cell laminae, two thin intercalated laminae have been found which lie on each side of lamina 1. These laminae contain small neurons embedded in a zone of small neural processes and many axo-axonal synapses occur there.Three types of axon form synapses in all cell laminae and have been called RLP, RSD and F axons. RLP axons have large terminals which contain loosely packed round synaptic vesicles, RSD axons have small terminals which contain closely packed round vesicles and F axons have terminals intermediate in size containing many flattened vesicles.RLP axons are identified as retinogeniculate fibers. Their terminals are confined to the cell laminae, where they form filamentous contacts upon large dendrites and asymmetrical regular synaptic contacts (with a thin postsynaptic opacity) upon large dendrites and F axons. RSD axons terminate within the cellular laminae and also between them. They form asymmetrical regular synaptic contacts on small dendrites and on F axons. F axons, which also occur throughout the nucleus, form symmetrical regular contacts upon all portions of the geniculate neurons and with other F axons. At axo-axonal junctions the F axon is always postsynaptic.Supported by Grant R 01 NB 06662 from the USPHS and by funds of the Neurological Sciences Group of the Medical Research Council of Canada. Most of the observations were made while R. W. Guillery was a visiting professor in the Department of Physiology at the University of Montreal. We thank the Department of Physiology for their support and Mr. K. Watkins, Mrs. E. Langer and Mrs. B. Yelk for their skillful technical assistance. 相似文献
13.
Summary Following chronic decortication, free postsynaptic sites were found in the lateral geniculate nucleus of adult cat. Quantitative electron-microscopic analysis of the free postsynaptic sites revealed that they were not identical with the original, vacant postsynaptic sites, but were newly assembled formations. The ability of both relay cells and local interneurons of the adult lateral geniculate nucleus to assemble and/or maintain postsynaptic sites indicates that these nerve cells may be involved in the formation of new synapses. 相似文献
14.
15.
Summary The ultrastructural study of the lateral geniculate nucleus (LGN) of the tree shrew (Tupaia glis) revealed two types of neurons: (1) a large thalamocortical relay cell (TCR), which may bear cilia, and (2) a small Golgi type-II interneuron (IN) with an invaginated nucleus. The narrow rim of pale cytoplasm of the IN contains fewer lysosomes and fewer Nissl bodies than the cytoplasm of the TCR. The IN perikarya, which in some cases establish somatosomatic contacts, frequently contain flattened or pleomorphic synaptic vesicles. The ratio of TCR to IN is 31.Three types of axon terminals were observed in the LGN. Two of them contain round synaptic vesicles but differ in size. The large RL boutons undergo dark degeneration after enucleation; they are the terminals of retino-geniculate fibers. The smaller RS boutons show dark degeneration after ablation of the visual cortex; they are the terminals of the cortico-geniculate fibers. The third type of bouton (F1 does not degenerate after either intervention. The boutons of this type are filled with flattened vesicles and are believed to be intrageniculate terminals. F2-profiles were interpreted as presynaptic dendrites of the IN. The characteristic synaptic glomeruli found in the LGN contain in their center an optic terminal. These optic terminals establish synaptic contacts with dendrites or spine-like dendritic protrusions of TCRs as well as with presynaptic dendrites. Synaptic triads were also seen. The distribution of the individual types of synaptic contacts in layers 3 and 4 was determined. Layer 4 contains only one third of the retino-geniculate synapses and of the synaptic contacts of F1-terminals. 相似文献
16.
Summary Nerve cell types of the lateral geniculate body of man were investigated with the use of a transparent Golgi technique that allows study of not only the cell processes but also the pigment deposits. Three types of neurons have been distinguished:Type-I neurons are medium-to large-sized multipolar nerve cells with radiating dendrites. Dendritic excrescences can often be encountered close to the main branching points. Type-I neurons comprise a variety of forms and have a wide range of dendritic features. Since all intermediate forms can be encountered as well, it appears inadequate to subdivide this neuronal type. One pole of the cell body contains numerous large vacuolated lipofuscin granules, which stain weakly with aldehyde fuchsin.Type-II and type-III neurons are small cells with few, sparsely branching and extended dendrites devoid of spines. In Golgi preparations they cannot be distinguished from each other. Pigment preparations reveal that the majority of these cells contains small and intensely stained lipofuscin granules within their cell bodies (type II), whereas a small number of them remains devoid of any pigment (type III). Intermediate forms do not occur. 相似文献
17.
18.
S. Le Vay 《Cell and tissue research》1971,113(3):396-419
Summary Two neuron types are distinguished by electron microscopy in the lateral geniculate nucleus (LGN) of the monkey-a large cell (P cell) interpreted as a geniculostriate relay cell, and a small cell (I cell) interpreted as an inhibitory interneuron. The I cell, distinguished by its small size, infolded nucleus, small mitochondria, cilium and small granular bodies, forms about 10% of the total neuron population. It could not be determined whether this cell has an axon, but its dendrites, which contain aggregates of flattened vesicles, are thought to form a proportion of the F processes, profiles which are post-synaptic to the retinal (RLP) axons and presynaptic to the dendrites of the P cells. The small dark (RSD) axon terminals of unknown origin contact the dendrites of both cell types.After eye enucleation the P cells of the affected laminae of the LGN shrink and partially withdraw their dendrites from the neuropil. By 29 months' survival, they have only a narrow cytoplasmic rim around the nucleus. A necrotic process also occurs, affecting fine dendrites by 22 days and large profiles by 45 days, but it is not clear whether whole cells are destroyed by this process. At 45 days the I cells are commonly seen to form somatodendritic synapses. The appearance of these synapses is interpreted as the result of a withdrawal to the soma of the presynaptic dendrites.It is concluded that the I cells are probably inhibitory interneurons subject to excitation and presynaptic inhibition by the RLP and RSD axons, and a diagram is presented to demonstrate the possible significance of these connections for the transmission of information through the LGN.The author wishes to thank Dr. J. Campos-Ortega for much practical advice. 相似文献
19.
20.
Summary The intergeniculate leaflet of the lateral geniculate nucleus is considered to modulate circadian activity rhythms probably mediated by a direct neuronal connection to the suprachiasmatic nucleus. The present study in the gerbil demonstrates, by anterograde tracing with Phaseolus vulgaris-leucoagglutinin (PHA-L), the existence of an additional neuronal projection from a subportion of the lateral geniculate nucleus, involving the intergeniculate leaflet, directly to the pineal gland. PHA-L-immunoreactive nerve fibers originating from perikarya at the injection site were located under the optic tract projecting towards the midsagittal plane. Delicate PHA-L-immunoreactive nerve fibers were observed in the posterior paraventricular thalamic nucleus, precommissural nucleus, olivary pretectal nucleus, anterior and posterior pretectal nuclei, and posterior commissure. Single fibers could be followed from the caudal part of the medial habenular nucleus and the pretectal area into the rostral part of the deep pineal gland. Other fibers continued through the posterior commissure into the contralateral hemisphere to terminate in the same structures as on the ipsilateral side. From the posterior commissure, small bundles of thick fibers entered the deep pineal gland where they arborized among the endocrine cells. A few nerve fibers were observed in the habenular commissure and the pineal stalk, but no fibers were identified in the superficial pineal. This direct geniculo-pineal connection suggests that the pineal gland is directly influenced by the optic system. 相似文献