首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cyclic nucleotide phosphodiesterase (3':5'-cyclic nucleotide 5'-nucleotidohydrolase, EC 3.1.4.17) systems of many tissues show multiple physical and kinetic forms. In contrast, the soluble rat uterine phosphodiesterase exists as a single enzyme form with non-linear Lineweaver-Burk kinetics for cyclic AMP (app. Km of approx. 3 and 20 microM) and linear kinetics for cyclic GMP (app. Km of approx. 3 microM) since the two hydrolytic activities are not separated by a variety of techniques. In uterine cytosolic fractions, cyclic AMP is a non-competitive inhibitor of cyclic GMP hydrolysis (Ki approx. 32 microM). Also, cyclic GMP is a non-competitive inhibitor of cyclic AMP hydrolysis (Ki approx 16 microM) at low cyclic GMP/cyclic AMP substrate ratios. However, cyclic GMP acts as a competitive inhibitor of cyclic AMP phosphodiesterase (Ki approx 34 microM) at high cyclic GMP/cyclic AMP substrate ratios. When a single hydrolytic form of uterine phosphodiesterase, separated initially by DEAE anion-exchange chromatography, is treated with trypsin (0.5 microgram/ml for 2 min) and rechromatographed on DEAE-Sephacel, two major forms of phosphodiesterase are revealed. One form elutes at 0.3 M NaOAc- and displays anomalous kinetics for cyclic AMP hydrolysis (app. Km of 2 and 20 microM) and linear kinetics for cyclic GMP (app. Km approx. 5 microM), kinetic profiles which are similar to those of the uterine cytosolic preparations. A second form of phosphodiesterase elutes at 0.6 M NaOAc- and displays a higher apparent affinity for cyclic AMP (app. Km approx. 1.5 mu) without appreciable cyclic GMP hydrolytic activity. These data provide kinetic and structural evidence that uterine phosphodiesterase contains distinct catalytic sites for cyclic AMP and cyclic GMP. Moreover, they provide further documentation that the multiple forms of cyclic nucleotide phosphodiesterase in mammalian tissues may be conversions from a single enzyme species.  相似文献   

2.
Cyclic nucleotide phosphodiesterase from calf myometrium has been purified to a homogeneous state for the first time, as can be evidenced from polyacrylamide gel electrophoresis data. The purification procedure included ion-exchange chromatography on DEAE-cellulose, high pressure liquid chromatography on TSK 545 DEAE and gel filtration through Toyopearl HW-55. The molecular mass of the enzyme as determined by gel filtration and polyacrylamide gel electrophoresis is 110 kD. The purified enzyme hydrolyzes cAMP and cGMP with Km = 30 microM and 18 microM, respectively.  相似文献   

3.
Cyclic nucleotide phosphodiesterase (3',5'-cyclic nucleotide nucleotidohydrolase, EC 3.1.4.17) activity isolated from Phaseolus vulgaris L. cv. Limberg seedlings was partially purified and characterized by fractional (NH4)2SO4 precipitation, DEAE-cellulose chromatography, chromatography on 3',5'-cAMP-agarose, gel permeation chromatography and chromatofocusing. A crude enzyme preparation, a 30–65% (NH4)2SO4 pellet, showed an acidic pH optimum. The enzyme activity was stimulated by imidazole and divalent cations such as Ca2+, Mg2+ and Mn2+, whereas NaF, PPi and Fe3+ were inhibitory. Isobutylmethylxanthine had no significant effect on the plant enzyme. An MI of 42 000 was estimated by gel permeation high performance liquid chromatography. By chromatography on 3',5'-cAMP-agarose a phosphodiesterase was resolved that produced 5'-AMP as sole reaction product.  相似文献   

4.
5.
Cyclic nucleotide derivatives have been used as a tool to characterize distinct catalytic sites on phosphodiesterase enzyme forms: the cGMP-stimulated enzyme from rat liver and the calmodulin-sensitive enzyme from rat or bovine brain. Under appropriate assay conditions, the analogues showed linear competitive inhibition with respect to cAMP (adenosine 3',5'-monophosphate) as substrate. The inhibition sequence of the fully activated cGMP-stimulated phosphodiesterase was identical to the inhibition sequence of the desensitized enzyme, i.e. the enzyme which has lost its ability to be stimulated by cGMP. The inhibition pattern could, therefore, not be attributed to competition with cGMP at an allosteric-activating site. Also, the inhibition sequence of the calmodulin-sensitive phosphodiesterase was maintained whether activity was basal or fully stimulated by calmodulin. When cAMP and cGMP, with identical chemical ligands substituted at the same position, were compared as inhibitors of the calmodulin-sensitive phosphodiesterase, the cGMP analogues were always the more potent suggesting that, for that enzyme, the catalytic site was sensitive to a guanine-type cyclic nucleotide structure. Comparing the two phosphodiesterases, it was possible to establish both similar and specific inhibitor potencies of cyclic nucleotide derivatives. In particular, the two enzymes exhibited large differences in analogue specificity modified at C-6, 6-chloropurine 3',5'-monophosphate or purine 3',5'-monophosphate.  相似文献   

6.
The identity and location of nuclear cyclic nucleotide phosphodiesterases (PDE) has yet to be ascertained. Intact cardiac nuclei and subnuclear fractions from ovine hearts were isolated to determine cAMP-specific PDE activity which was 3-fold greater than that of cGMP PDE, the latter being insensitive to Ca-calmodulin and zaprinast. Specific hydrolytic activities of the cardiac nuclear envelopes (NE) were similar to those measured in the corresponding intact nuclei, thus suggesting that most PDE activity is associated with the nuclear membrane. Moreover, the main hydrolytic activities in cardiac nuclei were attributed to PDE4 (56%) and PDE3 (44%). The pharmacological sensitivity of each isoform in terms of IC(50), K(m) and K(i) values was typical of previously characterized cardiac PDE 3 and 4 isoforms. PDE2 (cGMP-stimulated PDE) represented a minor component (8-9%) of total hydrolytic activity. Solubilization of nuclear envelopes and HPLC separation also yielded rolipram-sensitive PDE activities. Upon 1% Triton X-100 extractions, the presence of PDE3 and PDE4 was revealed in a low speed, nucleopore complex-enriched, P1 pellet. In addition, Western blot analysis demonstrated the presence of PDE4B and PDE4D subtypes in the nuclei as well as enrichment in NE. However, in the same preparations, the presence of PDE4A could not be ascertained. Altogether, these results suggest an intrinsic and predominant association of these nuclear PDEs with the NE and much likely with nucleopore complexes.  相似文献   

7.
It is shown that 17 beta-estradiol (10(-7)--10(-5) M) inhibited phosphodiesterase activity of the preparations (supernatant 100000 epsilon, 1 h) obtained from uterine tissue of sexually mature rats and did not affect adenylate cyclase activity of crude membrane fraction of this tissue. The hormone did not change phosphodiesterase activity of the preparations obtained from the brain, heart and outer segments of the retinal rods. Cytosol preparations from uterine tissue were demonstrated to be able to specific hormone binding. The antiestrogen clomifen completely blocked the binding. In the presence of clomifen estradiol had no effect on phosphodiesterase activity. It is suggested that estrogen receptors are necessary for the effect of 17 beta-estradiol on phosphodiesterase to be realized in uterine tissue.  相似文献   

8.
9.
The calmodulin-dependent cyclic AMP phosphodiesterase and cyclic GMP phosphodiesterase (EC 3.1.4.17) activity of rat pancreas was purified 280-fold by affinity chromatography on calmodulin-Sepharose 4B. It then accounted for 15% of the total cytosol cyclic GMP nucleotide phosphodiesterase activity, in the presence of Ca2+, and represented a minor component of proteins specifically adsorbed by the column. This activity was resolved on a DEAE-Sephacel column into two fractions, termed PI and PII, on the basis of their order of emergence. After this step, PI and PII were purified 5650- and 3700-fold respectively. The molecular weight of PI was 175 000 and that of PII was 116 000, by polyacrylamide-gradient-gel electrophoresis. Both forms of phosphodiesterase could hydrolyse cyclic AMP and cyclic GMP, although PII displayed a higher affinity toward cyclic GMP than toward cyclic AMP. PI and PII exhibited negative homotropic kinetics in the absence of calmodulin. Upon addition of calmodulin, both enzymes displayed Michaelis-Menten kinetics and a 5-9-fold increase in maximal velocity, at physiological concentrations of cyclic GMP and cyclic AMP. When a pancreatic extract freshly purified by affinity chromatography was immediately analysed by high-performance gel-permeation chromatography on a TSK gel G3000 SW column, PII represented as much as 78% of the eluted activity. This percentage decreased to 52% when the sample was stored at 0 degrees C for 20 h before analysis, suggesting that PII, possibly predominant in vivo, was converted into the heavier PI form upon storage.  相似文献   

10.
Purified calmodulin-stimulated cyclic nucleotide phosphodiesterase from brain, a homodimer of 59-kDa subunits, was activated by limited proteolysis with trypsin, alpha-chymotrypsin, Pronase, or papain and could not be further stimulated by addition of Ca2+ and calmodulin. Proteolysis increased Vmax and had little effect on the Km for cGMP. Treatment with alpha-chymotrypsin in the presence of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) produced, sequentially, 57- and 45-kDa peptides from the bovine and 55-, 53-, and 38-kDa peptides from the ovine enzyme. This protease-treated phosphodiesterase exhibited a Stokes radius of 3.9 nm and an S20,w value of 4.55; comparison with the hydrodynamic properties observed for native enzyme (4.3 nm, 5.95 S) strongly suggests a dimeric protein of Mr approximately 80,000-90,000. The proteolyzed species does not interact significantly with calmodulin immobilized on agarose, nor does it show complex formation with 2-dimethylaminonaphthalene-1-sulfonyl-calmodulin even at micromolar concentrations of protein. Proteolysis, in the presence of calmodulin plus Ca2+, fully activated phosphodiesterase, producing the same intermediate peptides; however, final peptides from the bovine and ovine enzymes were 47 and 42 kDa, respectively, indicating a new, specific conformation of the enzyme. When EGTA was added to such incubations, these peptides were cleaved to those of the size seen when proteolysis was carried out entirely in the presence of EGTA. The initial rate of activation was increased by the presence of Ca2+ and calmodulin, suggesting that, in complex, phosphodiesterase exhibits a site with increased susceptibility to proteolysis. Since calmodulin can still interact with a fully activated form of the enzyme, it appears that retention of calmodulin binding can occur concomitantly with damage to that portion of the phosphodiesterase molecule responsible for suppression of its basal catalytic activity.  相似文献   

11.
Soluble phosphodiesterase (EC 3.1.4.1) activity is 3-5-fold lower in superficial colonic epithelial cells compared to that in cells isolated from the lower colonic crypt. Higher phosphodiesterase activity in lower crypt cells is correlated with a 5-fold higher rate of incorporation of [3H]thymidine into DNA in these cells. DEAE-cellulose chromatography of the soluble fraction of superficial and proliferative colonic epithelial cells resulted in separation of three enzyme forms: (1) fraction I, an enzyme which hydrolyzes both cAMP and cGMP with high affinity (apparent Km cAMP = 5 +/- 1 microM, Km cGMP = 2.5 +/- 0.5 microM) and is stimulated 3-6-fold by Ca2+ plus calmodulin; (2) fraction II, a form which hydrolyzes both cAMP and cGMP with low affinity (S0.5 cAMP = 52 +/- 7 microM, S0.5 cGMP = 17 +/- 4 microM), exhibits positive copperativity with respect to substrate and shows cGMP stimulation of cAMP hydrolysis and (3) fraction III, a cAMP-specific form which exhibits biphasic kinetics, a low Km for cAMP (Km cAMP = 5 +/- 1 microM) and does not hydrolyze cGMP. The pattern of distribution of phosphodiesterase activities on DEAE-cellulose was similar in superficial and proliferative colonic epithelial cells. The higher specific activity in proliferative cells was reflected in higher activities of each of the three chromatographically distinct forms of the enzyme. In contrast to epithelial cells, the soluble fraction of homogenates of the submucosa and supporting cells exhibited phosphodiesterase forms I and II and was lacking in the form corresponding to fraction III of epithelial cells.  相似文献   

12.
Pig epidermal cyclic nucleotide phosphodiesterases (EC 3.1.4.16) have been partially purified by DEAE-cellulose column chromatography. At least three different forms of the epidermal phosphodiesterases were identified. They were cyclic GMP-specific, cyclic GMP- and cyclic AMP-hydrolyzing and apparently a cyclic AMP-specific enzyme: the first two forms were soluble and the last was the particulate enzyme. The cyclic GMP-specific soluble fraction had a relatively low Km, the cyclic GMP- and cyclic AMP-hydrolyzing fraction had a high Km for the respective substrates and the third particulate enzyme had both high and low Km values for cyclic AMP. The cyclic GMP-hydrolyzing enzyme was localized almost entirely in the soluble fraction, whereas cyclic AMP-hydrolyzing enzyme was distributed to both soluble and particulate fractions. Thus, our studies show that the multiple forms of pig epidermal enzyme differ distinctly in their substrate affinity, specificity and subcellular distribution.  相似文献   

13.
1. Isoelectric focusing on a flat gel bed of the rat heart cytosolic fraction resolved cyclic nucleotide phosphodiesterase activity into several forms, characterized by their substrate specificity, kinetic constants and dependence towards Ca2+ and calmodulin. A peak of pI 4.9 displayed 20 times more affinity for cyclic GMP than for cyclic AMP and was markedly inhibited by EGTA. A less substrate-specific form, only slightly sensitive to EGTA inhibition, focused at pH 5.45. Several overlapping peaks detected between pH 5.55 and pH6 specifically hydrolysed cyclic AMP, with non-Michaelian kinetics; these peaks were insensitive to Ca2+ chelation. 2. Isoelectric focusing did not dissociate enzyme-calmodulin complexes, as none of the resulting peaks was activatable by calmodulin plus Ca2+. 3. Some new information on rat cardiac phosphodiesterase is obtained with this technique, which is convenient for routine analytical studies of phosphodiesterase, as well as for preparative purposes.  相似文献   

14.
We have investigated the effects of several phosphodiesterase inhibitors on the activity of a cGMP-stimulated cyclic nucleotide phosphodiesterase purified from calf liver supernatant. Theophylline, RO 20-1724, and MY 5445 were not effective inhibitors. With 0.5 microM [3H]cGMP as substrate or with 0.5 microM [3H]cAMP in the presence of 1 microM cGMP, activity was inhibited by papaverine, dipyridamole, isobutylmethylxanthine (IBMX), and cilostamide. With 0.5 microM [3H]cAMP as substrate, however, only cilostamide was inhibitory; papaverine, dipyridamole, and IBMX increased activity. The increase was dependent on both drug and substrate concentration with maximal stimulation (150-180%) at concentrations of cAMP between 0.5 and 2.5 microM. At higher cAMP concentrations, the three drugs were inhibitory; inhibition was maximal at approximately 40 microM and decreased at higher cAMP concentrations. Inhibition of cGMP hydrolysis was maximal at approximately 3 microM and decreased at higher concentrations. Papaverine, IBMX, dipyridamole, and cilostamide inhibited [3H] cGMP hydrolysis competitively with Ki values of 3, 6.5, 7, and 11.5 microM, respectively. Papaverine, IBMX, or dipyridamole reduced the Hill coefficient for cAMP hydrolysis from 1.8 to 1.1-1.2, and Lineweaver-Burk plots were linear or nearly linear. With cilostamide, however, Lineweaver-Burk plots remained curvilinear. Thus, three competitive inhibitors, papaverine, dipyridamole, and IBMX, can mimic substrate and effect allosteric transitions that increase catalytic activity, whereas another, cilostamide, apparently cannot. Differences in the actions of these inhibitors presumably reflect differences in the molecular requirements for effective interaction at catalytic and allosteric sites on phosphodiesterase, i.e. differences in the structure of these sites.  相似文献   

15.
Cyclic nucleotide phosphodiesterase has been partially purified by calmodulin-Sepharose affinity chromatography from a soluble extract of Neurospora crassa. The phosphodiesterase activity remained bound to the affinity column even in the presence of 6 M urea and could only be eluted by calcium chelation. The enzyme exhibits cAMP and cGMP phosphodiesterase activities. Both activities can be enhanced by calmodulin in a Ca2+-dependent manner. Stimulation of cyclic nucleotide phosphodiesterase by calmodulin can be inhibited by calmodulin antagonists such as pimozide, trifluoperazine and chlorpromazine.  相似文献   

16.
cGMP-stimulated phosphodiesterase (PDE) has been directly photolabeled with [32P]cGMP using UV light. Sequence analysis of peptide fragments obtained from partial proteolysis or cyanogen bromide cleavage indicate that two different domains are labeled. One site, on a Mr = 36,000 chymotryptic fragment located near the COOH terminus, has characteristics consistent with it being close to or part of the catalytic site of the enzyme. This peptide contains a region of sequence that is highly conserved in all mammalian cyclic nucleotide PDEs and has been postulated to contain the catalytic domain of the enzyme. The other site, on a Mr = 28,000 cyanogen bromide cleavage fragment located near the middle of the molecule, probably makes up part of the allosteric site of the molecule. Labeling of the enzyme is concentration dependent and Scatchard analysis of labeling yields a biphasic plot with apparent half labeling concentrations of about 1 and 30 microM consistent with two types of sites being labeled. Limited proteolysis of the PDE by chymotrypsin yields five prominent fragments that separate by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) at Mr = 60,000, 57,000, 36,000, 21,000, and 17,000. Both the Mr = 60,000 and 57,000 apparently have blocked NH2 termini suggesting that the Mr = 57,000 fragment is a subfragment of the Mr = 60,000 fragment. Primary sequence analysis indicates that both the Mr = 21,000 and 17,000 fragments are subfragments of the Mr = 36,000 fragment. Autoradiographs of photolabeled then partially proteolyzed enzyme show labeled bands at Mr = 60,000, 57,000, and 36,000. Addition of 5 microM cAMP prior to photolabeling eliminates photolabeling of the Mr = 36,000 fragment but not the Mr = 60,000 or 57,000 fragments. The labeled site not blocked by cAMP is also contained in a Mr = 28,000 cyanogen bromide fragment of the enzyme that does not overlap with the Mr = 36,000 proteolytic fragment. Limited chymotryptic proteolysis also increases basal activity and eliminates cGMP stimulation of cAMP hydrolysis. The chymotryptic fragments can be separated by either ion exchange high performance liquid chromatography (HPLC) or solid-phase monoclonal antibody treatment. A solid-phase monoclonal antibody against the cGMP-stimulated PDE removes the Mr = 60,000 and 57,000 labeled fragments and any intact, unproteolyzed protein but does not remove the Mr = 36,000 fragment or the majority of activity. Ion exchange HPLC separates the fragments into three peaks (I, II, and III). Peaks I and II contain activity of approximately 40 and 100 units/mg, respectively. Peak II is the undigested or slightly nicked native enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
《Phytochemistry》1986,25(10):2305-2307
The carrot phytoalexin, 6-methoxymellein, was isolated and purified from carrot root slices infected by the fungus Chaetomium globosum. It inhibited the basal and calmodulin-promoted activity of cyclic nucleotide phosphodiesterase. The inhibition of calmodulin-promoted diesterase activity was reduced by increasing the concentration of calmodulin or calcium while the inhibition of basal diesterase activity was reversed by the addition of magnesium to the assay mixture of the enzyme.  相似文献   

18.
19.
A procedure for the assay of cyclic nucleotide phosphodiesterase is described in which labeled cyclic nucleotide is separated from labeled nucleoside by the batchwise addition of ethanolic slurries of Dowex 2 fluoride. Under the conditions described there is no detectable adsorption of nucleoside by the anion exchanger, which removes more than 95% of the tritium in boiled samples of [8-3H]cAMP or [8-3H]cGMP. Linear time courses and enzyme vs activity relationships are described for 10?3 and 10?7m cAMP and 10?4m cGMP. The method is limited by interference by neutral salts and by the enzymatic conversion of adenosine into inosine.  相似文献   

20.
Cyclic nucleotide phosphodiesterase activity (3', 5'-cyclic-nucleotide 5'-nucleotidohydrolase, 3.1.2.17) was studied in homogenates of WI-38 human lung fibroblasts using 0.1--200 microgram cyclic nucleotides. Activities were observed with low Km for cyclic AMP(2--5 micron) and low Km for cyclic GMP (1--2 micron) as well as with high Km values for cyclic AMP (100--125 micron) and cyclic GMP (75--100 micron). An increased low Km cyclic AMP phosphodiesterase activity was found upon exposure of intact fibroblasts to 3-isobutyl-1-methylxanthine, an inhibitor of phosphodiesterase activity in broken cell preparations, as well as to other agents which elevate cyclic AMP levels in these cells. The enhanced activity following exposure to 3-isobutyl-1-methylxanthine was selective for the low Km cyclic AMP phosphodiesterase since there was no change in activity of low Km cyclic GMP phosphodiesterase activity or in high Km phosphodiesterase activity with either nucleotide as substrate. The enhanced activity due to 3-isobutyl-1-methylxanthine appeared to involve de novo synthesis of a protein with short half-life (30 min), based on experiments involving cycloheximide and actinomycin D. This activity was also enhanced with increased cell density and by decreasing serum concentration. Studies of some biochemical properties and subcellular distribution of the enzyme indicated that the induced enzyme was similar to the non-induced (basal) low Km cyclic AMP phosphodiesterase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号