首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L-type and T-type Ca2+ current in cultured ventricular guinea pig myocytes   总被引:1,自引:0,他引:1  
The aim of this investigation was to study L-type and T-type Ca(2+) current (I(CaL) and I(CaT)) in short-term cultured adult guinea pig ventricular myocytes. The isolated myocytes were suspended in serum-supplemented medium up to 5 days. Using whole-cell patch clamp techniques ICaL and ICaT were studied by applying voltage protocols from different holding potentials (-40 and -90 mV). After 5 days in culture the myocytes still showed their typical rod shaped morphology but a decline in cell membrane capacitance (26 %). The peak density of ICaT was reduced significantly between day 0 (-1.6+/-0.37 pA/pF, n=9) and day 5 (-0.4+/-0.13 pA/pF, n=11), whereas peak ICaL density revealed no significant differences during culturing. The I(CaT)/I(CaL) ratio dropped from 0.13 at day 0 to 0.05 at day 5. Compared with day 0 I(CaL) the steady state inactivation curve of day 1, day 3 and day 5 myocytes was slightly shifted to more negative potentials. Our data indicate that guinea pig ventricular L-type and T-type Ca(2+) channels are differently regulated in culture.  相似文献   

2.
Lin YY  Wu DM  Liu L  Liu QH  Yan ZY  Wu BW 《生理学报》2008,60(1):38-42
本研究采用全细胞膜片钳技术观察了SNCl62(一种选择性δ阿片受体激动剂)对人鼠心室肌细胞L型钙电流(L-type Ca2 current,ICa-L)和瞬时外向钾电流(transient outward K current,Ito)的影响.结果显示,SNCl62明显抑制大鼠心室肌细胞,Ica L和Ica L,对Ica L.和k的最大抑制率分别为(46.13±4.12)%和(36.53±10.57)%.1x10-4mol/L SNCl62使,Ica L的甲均电流密度从(8.98±0.40)pA/pF下降到(4.84±0.44)pA/pF(P<0.01,n=5),Ito的平均电流密度从(18.69±2.42)pA/pF降低到(11.73±1.67)pA/pF(P<0.01,n=5).单独应用naltrindole(一种选择性δ阿片受体拮抗剂)对大鼠心室肌细胞Ica L和Ito无显著作用,但预先应用naltrindole可以消除SNCl62对Ica L和Ito的抑制作用.结果表明,通过δ阿片受体,SNCl62(1x10-6~1x10-4mol/L)浓度依赖性地抑制人鼠心室肌细胞Ica L和Ito这可能是激动δ阿片受体产生抗心律失常效应的重要机制.  相似文献   

3.
Angiotensin II (ANG II) evokes positive inotropic responses in various species. However, the effects of this peptide on L-type Ca(2+) currents (I(Ca)) are still controversial. We report in this study that the effects of ANG II on I(Ca) differ depending on the mode of patch-clamp technique used, standard whole cell (WC) or perforated patch (PP). No significant effects of ANG II (0.5 microM) were observed when WC in cells dialyzed with high EGTA was used. However, when the intracellular milieu was preserved using PP, ANG II induced a significant 77 +/- 6% increase in I(Ca) (-2.2 +/- 0.3 in control and -3.9 +/- 0.6 pA/pF in ANG II, n = 8, P < 0.05). When WC was used in cells dialyzed with low Ca(2+) buffer capacity (EGTA 0.1 mM), ANG II was able to induce an increase in I(Ca) (-3.5 +/- 0.3 in control vs. -4.8 +/- 0.4 pA/pF in ANG II, n = 13, P < 0.05). This increase was prevented when the cells were also dialyzed with the protein kinase C (PKC) inhibitor chelerythrine (50 microM) or calphostin C (1 microM). The above results allow us to conclude that strong intracellular Ca(2+) buffering prevents the physiological actions of ANG II on cardiac I(Ca), which are also dependent on activation of PKC.  相似文献   

4.
The relative contribution of the sarcoplasmic reticulum (SR), the L-type Ca(2+) channel and the Na(+)/Ca(2+) exchanger (NCX) were assessed in turtle ventricular myocytes using epifluorescent microscopy and electrophysiology. Confocal microscopy images of turtle myocytes revealed spindle-shaped cells, which lacked T-tubules and had a large surface area-to-volume ratio. Myocytes loaded with the fluorescent Ca(2+)-sensitive dye Fura-2 elicited Ca(2+) transients, which were insensitive to ryanodine and thapsigargin, indicating the SR plays a small role in the regulation of contraction and relaxation in the turtle ventricle. Sarcolemmal Ca(2+) currents were measured using the perforated-patch voltage-clamp technique. Depolarizing voltage steps to 0 mV elicited an inward current that could be blocked by nifedipine, indicating the presence of Ca(2+) currents originating from L-type Ca(2+) channels (I(Ca)). The density of I(Ca) was 3.2 +/- 0.5 pA/pF, which led to an overall total Ca(2+) influx of 64.1 +/- 9.3 microM/l. NCX activity was measured as the Ni(+)-sensitive current at two concentrations of intracellular Na(+) (7 and 14 mM). Total Ca(2+) influx through the NCX during depolarizing voltage steps to 0 mV was 58.5 +/- 7.7 micromol/l and 26.7 +/- 3.2 micromol/l at 14 and 7 mM intracellular Na(+), respectively. In the absence of the SR and L-type Ca(2+) channels, the NCX is able to support myocyte contraction independently. Our results indicate turtle ventricular myocytes are primed for sarcolemmal Ca(2+) transport, and most of the Ca(2+) used for contraction originates from the L-type Ca(2+) channel.  相似文献   

5.
Cheng YP  Yin JX  Cheng LP  He RR 《生理学报》2004,56(2):243-247
应用全细胞膜片钳技术研究低浓度辣椒素(capsaicin,CAP)对单个豚鼠心室肌细胞L-型钙电流的影响及其作用机制.CAP(1~25 nmol/L)可浓度依赖性增加电压依赖性的ICa-L的峰值并下移I-V曲线.CAPl,10,25 nmol/L使ICa-L最大峰值分别由-9.67±0.7pA/pF增至-10.21±0.8pA/pF(P>0.05),-11.37±0.8pA/pF和-12.84±0.9pA/pF(P<0.05).CAP25nmol/L可明显使稳态激活曲线左移,激活中点电压(V0.5)由-20.76±2.0mV变至-26.71±3.0mV(P<0.05),表明低浓度CAP改变了钙通道激活的电压依赖性.CAP25nmol/L对电压依赖性稳态失活曲线和ICa-L从失活状态下复活过程无明显影响.辣椒素受体(VR1)阻断剂钌红(RR,10μmol/L)可阻断低浓度辣椒素的效应.以上结果表明,低浓度辣椒素使钙通道稳态激活曲线左移,增加ICa-L,这一效应可能由VRl介导.  相似文献   

6.
Tunas are capable of exceptionally high maximum metabolic rates; such capability requires rapid delivery of oxygen and metabolic substrate to the tissues. This requirement is met, in part, by exceptionally high maximum cardiac outputs, opening the possibility that myocardial Ca(2+) delivery is enhanced in myocytes from tuna compared with those from other fish. In this study, we investigated the electrophysiological properties of the cardiac L-type Ca(2+) channel current (I(Ca)) to test the hypothesis that Ca(2+) influx would be large and have faster kinetics in cardiomyocytes from Pacific bluefin tuna (Thunnus orientalis) than in those from its sister taxon, the Pacific mackerel (Scombe japonicus). In accordance with this hypothesis, I(Ca) in atrial myocytes from bluefin tuna had significantly greater peak current amplitudes and faster fast inactivation kinetics (-4.4 +/- 0.2 pA/pF and 25.9 +/- 1.6 ms, respectively) than those from mackerel (-2.7 +/- 0.5 pA/pF and 32.3 +/- 3.8 ms, respectively). Steady-state activation, inactivation, and recovery from inactivation were also faster in atrial myocytes from tuna than from mackerel. In ventricular myocytes, current amplitude and activation and inactivation rates were similar in both species but elevated compared with those of other teleosts. These results indicate enhanced I(Ca) in atrial myocytes from bluefin tuna compared with Pacific mackerel; this enhanced I(Ca) may be associated with elevated cardiac performance, because I(Ca) delivers the majority of Ca(2+) involved in excitation-contraction coupling in most fish hearts. Similarly, I(Ca) is enhanced in the ventricle of both species compared with other teleosts and may play a role in the robust cardiac performance of fishes of the family Scombridae.  相似文献   

7.
神经肽Y对心室肌细胞离子通道的影响   总被引:3,自引:1,他引:2  
Zhao HC  Liu ZB  Feng QL  Cui XL  Zhang CM  Wu BW 《生理学报》2006,58(3):225-231
采用全细胞膜片钳技术观察神经肽Y(neuropeptide Y,NPY)对心室肌细胞离子通道的影响。结果如下:(1)NPY浓度在1.0~100nmol/L范围内剂量依赖性抑制大鼠心室肌细胞I_(Ca-L),IC_(50)值为1.86nmol/L。NPY对I_(Ca-L)的I-V曲线的最大峰值电位、激活和失活电位均无显著影响。NPY对去甲肾上腺素(norepinephrine,NE)增加的I_(Ca-L)有显著抑制作用。(2)NPY对人鼠心室肌细胞I_(Na/Ca)有显著抑制作用。10nmol/L NPY使前向I__(Na/Ca)由(0.27±0.11)pA/pF减小为(0.06±0.01)pA/pF;反向I__(Na/Ca)由(0.45±0.12)pA/pF降为(0.27±0.09)pA/pF(P<0.05,n=4)。(3)NPY对大鼠心室肌细胞I_(to)有显著增强作用。10 nmol/L NPY使I_(to)由(12.5±0.70)pA/pF增加至(14.7±0.59)pA/pF(P<0.05,n=4)。(4)10nmol/L NPY对大鼠心室肌细胞I_(Na)没有显著影响。(5)10nmol/L NPY对豚鼠心室肌细胞I_K无明显影响。研究结果证实,NPY抑制大鼠心室肌细胞I_(Ca-L)和I_(Na/Ca),增强I_(to)对I_Na和豚鼠心审肌细胞I_K没有显著作用,表明NPY对上述主要离子通道的效应与NE的效应相拮抗。  相似文献   

8.
Myocytes from the failing myocardium exhibit depressed and prolonged intracellular Ca(2+) concentration ([Ca(2+)](i)) transients that are, in part, responsible for contractile dysfunction and unstable repolarization. To better understand the molecular basis of the aberrant Ca(2+) handling in heart failure (HF), we studied the rabbit pacing tachycardia HF model. Induction of HF was associated with action potential (AP) duration prolongation that was especially pronounced at low stimulation frequencies. L-type calcium channel current (I(Ca,L)) density (-0.964 +/- 0.172 vs. -0.745 +/- 0.128 pA/pF at +10 mV) and Na(+)/Ca(2+) exchanger (NCX) currents (2.1 +/- 0.8 vs. 2.3 +/- 0.8 pA/pF at +30 mV) were not different in myocytes from control and failing hearts. The amplitude of peak [Ca(2+)](i) was depressed (at +10 mV, 0.72 +/- 0.07 and 0.56 +/- 0.04 microM in normal and failing hearts, respectively; P < 0.05), with slowed rates of decay and reduced Ca(2+) spark amplitudes (P < 0.0001) in myocytes isolated from failing vs. control hearts. Inhibition of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA)2a revealed a greater reliance on NCX to remove cytosolic Ca(2+) in myocytes isolated from failing vs. control hearts (P < 0.05). mRNA levels of the alpha(1C)-subunit, ryanodine receptor (RyR), and NCX were unchanged from controls, while SERCA2a and phospholamban (PLB) were significantly downregulated in failing vs. control hearts (P < 0.05). alpha(1C) protein levels were unchanged, RyR, SERCA2a, and PLB were significantly downregulated (P < 0.05), while NCX protein was significantly upregulated (P < 0.05). These results support a prominent role for the sarcoplasmic reticulum (SR) in the pathogenesis of HF, in which abnormal SR Ca(2+) uptake and release synergistically contribute to the depressed [Ca(2+)](i) and the altered AP profile phenotype.  相似文献   

9.
Transient outward K(+) current density (I(to)) has been shown to vary between different regions of the normal myocardium and to be reduced in heart disease. In this study, we measured regional changes in action potential duration (APD), I(to), and intracellular Ca(2+) concentration ([Ca(2+)](i)) transients of ventricular myocytes derived from the right ventricular free wall (RVW) and interventricular septum (SEP) 8 wk after myocardial infarction (MI). At +40 mV, I(to) density in sham-operated hearts was significantly higher (P < 0.01) in the RVW (15.0 +/- 0.8 pA/pF, n = 47) compared with the SEP (7.0 +/- 1.1 pA/pF, n = 18). After MI, I(to) density was not reduced in SEP myocytes but was reduced (P < 0.01) in RVW myocytes (8.7 +/- 1.0 pA/pF, n = 26) to levels indistinguishable from post-MI SEP myocytes. These changes in I(to) density correlated with Kv4.2 (but not Kv4.3) protein expression. By contrast, Kv1.4 expression was significantly higher in the RVW compared with the SEP and increased significantly after MI in RVW. APD measured at 50% or 90% repolarization was prolonged, whereas peak [Ca(2+)](i) transients amplitude was higher in the SEP compared with the RVW in sham myocytes. These regional differences in APD and [Ca(2+)](i) transients were eliminated by MI. Our results demonstrate that the significant regional differences in I(to) density, APD, and [Ca(2+)](i) between RVW and SEP are linked to a variation in Kv4.2 expression, which largely disappears after MI.  相似文献   

10.
Among voltage-gated Ca2+ channels the non-dihydropyridine-sensitive alpha1E subunit is functionally less well characterized than the structurally related alpha1A (omega-agatoxin-IVA sensitive, P- /Q-type) and alpha1B (omega-conotoxin-GVIA sensitive, N-type) subunits. In the rat insulinoma cell line, INS-1, a tissue-specific splice variant of alpha1E (alpha1Ee) has been characterized at the mRNA and protein levels, suggesting that INS-1 cells are a suitable model for investigating the function of alpha1Ee. In alpha1E-transfected human embryonic kidney (HEK-293) cells the alpha1E-selective peptide antagonist SNX-482 (100 nM) reduces alpha1Ed- and alpha1Ee-induced Ba2+ inward currents in the absence and presence of the auxiliary subunits beta3 and alpha2delta-2 by more than 80%. The inhibition is fast and only partially reversible. No effect of SNX-482 was detected on the recombinant T-type Ca2+ channel subunits alpha1G, alpha1H, and alpha1I showing that the toxin from the venom of Hysterocrates gigas is useful as an alpha1E-selective antagonist. After blocking known components of Ca2+ channel inward current in INS-1 cells by 2 microM (+/-)-isradipine plus 0.5 microM omega-conotoxin-MVIIC, the remaining current is reduced by 100 nM SNX-482 from -12.4 +/- 1.2 pA/pF to -7.6 +/- 0.5 pA/pF (n = 9). Furthermore, in INS-1 cells, glucose- and KCl-induced insulin release are reduced by SNX-482 in a dose-dependent manner leading to the conclusion that alpha1E, in addition to L-type and non-L-type (alpha1A-mediated) Ca2+ currents, is involved in Ca2+ dependent insulin secretion of INS-1 cells.  相似文献   

11.
The effects of H(2)O(2) on pacemaker activity and underlying membrane currents were studied in isolated rabbit sinoatrial (SA) node cells using perforated patch current- and voltage-clamp methods. Short-term exposure (<10 min) of the nodal cells to H(2)O(2) (200 microM) resulted in an initial shortening of spontaneous action potential cycle length (from 445 +/- 60 to 398 +/- 56 ms; P < 0.05) and a prolongation of action potential duration. H(2)O(2) (100 microM) significantly increased peak L-type Ca(2+) current (I(Ca,L)) from -384 +/- 77 to -439 +/- 84 pA (116 +/- 2%, n = 6). Additionally, the persistent or non-inactivating component of I(Ca,L) was increased from -52 +/- 3 to -88 +/- 14 pA (174 +/- 19%, n = 6). The hyperpolarization-activated current (I(f)) was decreased from -228 +/- 62 to -161 +/- 72 pA after exposure to H(2)O(2) (n = 7). There were no changes in the delayed rectifier K(+) current (I(K)) (n = 7). H(2)O(2)-induced Ca(2+) currents were blocked by 2 microM nicardipine (n = 6), 2 mM Ni(2+) (n = 2), and the protein kinase C (PKC) inhibitor bisindolylmaleimide (10(-7) M; n = 4) but not by 20 microM tetrodotoxin. These results suggest that H(2)O(2) can increase the spontaneous pacing rate in rabbit SA node cells by enhancing I(Ca,L) and that this effect is mediated by a PKC-dependent pathway.  相似文献   

12.
In this study we tested the hypothesis that ventricular homeostasis of L-type Ca(2+) current (I(Ca,L)) minimally involves regulation of the main pore-forming alpha-subunit (Ca(V)1.2) and auxiliary proteins that serve as positive or negative regulators of I(Ca,L). We treated animals for 24 h with verapamil (Ver, 3.6 mg.kg(-1).day(-1)), isoproterenol (Iso, 30 mg.kg(-1).day(-1)), or Iso + Ver via osmotic minipumps. To test for alterations of Ca(2+) channel complex components we performed real-time PCR and Western blot analysis on ventricle. In addition, cardiac myocytes (CMs) were dispersed and current was recorded in the whole cell configuration to evaluate I(Ca,L). Surprisingly, 24- to 48-h Ver increased Ca(V)1.2 mRNA and protein and I(Ca,L) current (Ver 11 +/- 1pA/pF vs. control 7 +/- 0.5pA/pF; P < 0.01). I(Ca,L) from CMs in Ver mice showed no change in whole cell capacitance. To examine the in vivo effects of a physiologically relevant Ca(2+) channel agonist, we treated mice with Iso. Twenty-four-hour Iso infusion increased heart rate; Ca(V)1.2- and Ca(V)beta(2) mRNA levels were constant, but the Ca(2+) channel subunit mRNA Rem was increased twofold. Cells isolated from 24-h Iso hearts showed no change in basal I(Ca,L) density and diminished responsiveness to acute 1 muM Iso. To further examine the homeostatic regulation of the Ca(2+) channel, we treated animals for 24 h with Iso + Ver. The influence of Iso + Ver was similar that of to Iso alone on Ca(2+) channel mRNAs and I(Ca,L), with the exception that it prevented the increase in Rem seen with Iso treatment. Long-term Ca(2+) channel blockade induces an increase of Ca(V)1.2 mRNA and protein and significantly increases I(Ca,L).  相似文献   

13.
14.
Endurance exercise training increases smooth muscle L-type Ca(2+) current density in both resistance and proximal coronary arteries of female miniature swine. The purpose of the present study was to determine 1) whether gender differences exist in coronary smooth muscle (CSM) L-type Ca(2+) current density and 2) whether endurance training in males would demonstrate a similar adaptive response as females. Proximal, conduit (approximately 1.0 mm), and resistance [~200 microm (internal diameter)] coronary arteries were obtained from sedentary and treadmill-trained swine of both sexes. CSM were isolated by enzymatic digestion (collagenase plus elastase), and voltage-gated Ca(2+)-channel current (I(Ca)) was determined by using whole cell voltage clamp during superfusion with 75 mM tetraethylammonium chloride and 10 mM BaCl(2). Current-voltage relationships were obtained at test potentials from -60 to 70 mV from a holding potential of -80 mV, and I(Ca) was normalized to cell capacitance (pA/pF). Endurance treadmill training resulted in similar increases in heart weight-to-body weight ratio, endurance time, and skeletal muscle citrate synthase activity in male and female swine. I(Ca) density was significantly greater in males compared with females in both conduit (-7.57 +/- 0.58 vs. -4.14 +/- 0.47 pA/pF) and resistance arteries (-11.25 +/- 0.74 vs. -6.49 +/- 0.87 pA/pF, respectively). In addition, voltage-dependent activation of I(Ca) in resistance arteries was shifted to more negative membrane potentials in males. Exercise training significantly increased I(Ca) density in both conduit and resistance arteries in females (-7.01 +/- 0.47 and -9.73 +/- 1.13 pA/pF, respectively) but had no effect in males (-8.61 +/- 0.50 and -12.04 +/- 1.07 pA/pF, respectively). Thus gender plays a significant role in determining both the magnitude and voltage dependence of I(Ca) in CSM and the adaptive response of I(Ca) to endurance training.  相似文献   

15.
Cui XL  Chen HZ  Wu DM  Wu BW 《生理学报》2004,56(6):713-716
本文旨在研究氨甲酰胆碱(carbachol, CCh)对豚鼠心肌的正性变力性机制。用Axon200A膜片钳放大器观察CCh 对电压钳制下的豚鼠心肌细胞L-型钙电流(ICa)和钠钙交换电流(INa/Ca)的效应。结果表明, CCh(100 μmol/L)分别使正向INa/Ca从对照组的(1.2 ± 0.1) pA/pF 增加到(2.0 ± 0.3) pA/pF,使反向 INa/Ca 从对照组的(1.3 ± 0.5) pA/pF 增加到(2.1 ± 0.8) pA/pF (P<0.01)。CCh对ICa无影响。CCh 对INa/Ca的激动作用可被阿托品和methoctramine所阻断。以上结果提示, CCh 对豚鼠心脏的正性变力作用是通过激动了钠钙交换,而且是 M2 毒蕈碱受体所介导的。  相似文献   

16.
Deng C  Yu X  Kuang S  Zhang W  Zhou Z  Zhang K  Qian W  Shan Z  Yang M  Wu S  Lin S 《Life sciences》2007,80(7):665-671
Carvedilol is a beta- and alpha(1)-adrenoceptor antagonist. It is widely used in the treatment of cardiovascular diseases including atrial arrhythmias. However, it is unclear whether carvedilol may affect the repolarization currents, transient outward K(+) current (I(to)) and ultra-rapid delayed rectifier K(+) current (I(Kur)) in the human atrium. The present study evaluated effects of carvedilol on I(to) and I(Kur) in isolated human atrial myocytes by whole-cell patch-clamp recording technique. We found that carvedilol reversibly inhibited I(to) and I(Kur) in a concentration-dependent manner. Carvedilol (0.3 microM) suppressed I(to) from 9.2+/-0.5 pA/pF to 4.8+/-0.5 pA/pF (P<0.01) and I(Kur) from 3.6+/-0.5 pA/pF to 1.9+/-0.3 pA/pF (P<0.01) at +50 mV. I(to) was inhibited in a voltage-dependent manner, being significantly attenuated at test potentials from +10 to +50 mV, whereas the inhibition of I(Kur) was independent. The concentration giving a 50% inhibition was 0.50 microM for I(to) and 0.39 microM for I(Kur). Voltage-dependence of activation, inactivation and time-dependent recovery from inactivation of I(to) were not altered by carvedilol. However, time to peak and time-dependent inactivation of I(to) were significantly accelerated, indicating an open channel blocking action. The findings indicate that carvedilol significantly inhibits the major repolarization K(+) currents I(to) and I(Kur) in human atrial myocytes.  相似文献   

17.
Transforming growth factors-beta (TGF-betas) are essential to the structural remodeling seen in cardiac disease and development; however, little is known about potential electrophysiological effects. We hypothesized that chronic exposure (6-48 h) of primary cultured neonatal rat cardiomyocytes to the type 1 TGF-beta (TGF-beta1, 5 ng/ml) may affect voltage-dependent Ca(2+) channels. Thus we investigated T- (I(CaT)) and L-type (I(CaL)) Ca(2+) currents, as well as dihydropyridine-sensitive charge movement using the whole cell patch-clamp technique and quantified Ca(V)1.2 mRNA levels by real-time PCR assay. In ventricular myocytes, TGF-beta1 did not exert significant electrophysiological effects. However, in atrial myocytes, TGF-beta1 reduced both I(CaL) and charge movement (55% at 24-48 h) without significantly altering I(CaT), cell membrane capacitance, or channel kinetics (voltage dependence of activation and inactivation, as well as the activation and inactivation rates). Reductions of I(CaL) and charge movement were explained by concomitant effects on the maximal values of L-channels conductance (G(max)) and charge movement (Q(max)). Thus TGF-beta1 selectively reduces the number of functional L-channels on the surface of the plasma membrane in atrial but not ventricular myocytes. The TGF-beta1-induced I(CaL) reduction was unaffected by supplementing intracellular recording solutions with okadaic acid (2 microM) or cAMP (100 microM), two compounds that promote L-channel phosphorylation. This suggests that the decreased number of functional L-channels cannot be explained by a possible regulation in the L-channels phosphorylation state. Instead, we found that TGF-beta1 decreases the expression levels of atrial Ca(V)1.2 mRNA (70%). Thus TGF-beta1 downregulates atrial L-channel expression and may be therefore contributing to the in vivo cardiac electrical remodeling.  相似文献   

18.
Coexpression of the serum and glucocorticoid inducible kinase 1 (SGK1) up-regulates Kv channel activity in Xenopus oocytes and human embryonic kidney cells. To investigate the physiological impact of SGK1 dependent Kv channel regulation, we recorded whole-cell currents in lung fibroblasts from SGK1 knockout mice (sgk1-/-) and wild-type littermates (sgk1+/+). Serum-grown mouse lung fibroblasts (MLF) from both genotypes exhibited voltage-gated outwardly rectifying K(+)-currents with time-dependent activation (tau(act) approximately 3 msec), slow inactivation (tau(inact) approximately 700 msec), use-dependent inactivation, and (partial) inhibition by K(+) channel blockers TEA, 4-AP, and margatoxin. In serum grown MLF peak Kv current density at +100 mV was significantly lower in sgk1-/- (14 +/- 2 pA/pF, n = 13) than in sgk1+/+ (31 +/- 4 pA/pF, n = 16). PCR amplification of different Kv1 and Kv3 subunits from mouse fibroblasts demonstrated the expression of Kv1.1-1.7, Kv3.1, and Kv3.3 mRNA in both sgk1+/+ and sgk1-/- cells. Upon serum deprivation Kv currents almost disappeared in sgk1+/+ (4 +/- 1 pA/pF, n = 11) but not in sgk1-/- (10 +/- 1 pA/pF, n = 6) MLF. Accordingly, following serum deprivation Kv current density was significantly lower in sgk1+/+ than in sgk1-/-. Stimulation of serum-depleted cells with dexamethasone (dex) (1 microM, 1 day), IGF-1 (6.7 microM, 4-6 h) or both, significantly activated Kv currents in sgk1+/+ but not in sgk1-/- MLF. In the presence of both, dex and IGF-1, the Kv current density was significantly larger in sgk1+/+ (27 +/- 3 pA/pF, n = 12) than in sgk1-/- (13 +/- 3 pA/pF, n = 10) cells. Similar to MLF, Kv currents were significantly higher in sgk1+/+ mouse tail fibroblasts (MTF). In sgk1+/+ but not sgk1-/- MTF the Kv currents were inhibited upon serum deprivation and reincreased after stimulation of serum deprived MTF with dex (1 microM, 1 day) and afterwards with IGF-1 (6.7 microM, 4-6 h). According to Fura-2-fluorescence capacitative Ca(2+) entry was lower in sgk1-/- MTF compared to sgk1+/+ MTF. Upon serum deprivation capacitative Ca(2+) entry decreased significantly in sgk1+/+ but not in sgk1-/- MTF. Stimulation of depleted cells with dex (1 microM, 1 day) and afterwards with IGF-1 (6.7 microM, 4-6 h) reincreased capacitative Ca(2+) entry in sgk1+/+ MTF, whereas in sgk1-/- cells it remained unchanged. In conclusion, lack of SGK1 does not abrogate Kv channel activity but abolishes regulation of those channels by serum, glucocorticoids and IGF-1, an effect influencing capacitative Ca(2+) entry.  相似文献   

19.
Limited information is available regarding the effects of protein kinase C (PKC) isozyme(s) in the regulation of L-type Ca(2+) channels due to lack of isozyme-selective modulators. To dissect the role of individual PKC isozymes in the regulation of cardiac Ca(2+) channels, we used the recently developed novel peptide activator of the epsilonPKC, epsilonV1-7, to assess the role of epsilonPKC in the modulation of L-type Ca(2+) current (I(Ca,L)). Whole cell I(Ca,L) was recorded using patch-clamp technique from rat ventricular myocytes. Intracellular application of epsilonV1-7 (0.1 microM) resulted in a significant inhibition of I(Ca,L) by 27.9 +/- 2.2% (P < 0.01, n = 8) in a voltage-independent manner. The inhibitory effect of epsilonV1-7 on I(Ca,L) was completely prevented by the peptide inhibitor of epsilonPKC, epsilonV1-2 [5.2 +/- 1.7%, not significant (NS), n = 5] but not by the peptide inhibitors of cPKC, alphaC2-4 (31.3 +/- 2.9%, P < 0.01, n = 6) or betaC2-2 plus betaC2-4 (26.1 +/- 2.9%, P < 0.01, n = 5). In addition, the use of a general inhibitor (GF-109203X, 10 microM) of the catalytic activity of PKC also prevented the inhibitory effect of epsilonV1-7 on I(Ca,L) (7.5 +/- 2.1%, NS, n = 6). In conclusion, we show that selective activation of epsilonPKC inhibits the L-type Ca channel in the heart.  相似文献   

20.
While androgens generally have been associated with an increased cardiovascular risk, recent studies indicate potential beneficial acute effects of testosterone. However, detailed evaluation of chronic and acute actions of testosterone on the function of cardiac I(Ca,L) and intracellular Ca2+ handling is limited. To clarify this situation we performed whole-cell and single-channel analysis of I(Ca,L), recordings of Ca2+ sparks, measurements of contractility and quantitative real-time RT-PCR in rat cardiomyocytes following testosterone pretreatment and acute testosterone application. Pretreatment with testosterone 100 nM for 24-30 h increased whole-cell I(Ca,L) from 3.8+/-0.8 pA/pF (n=10) to 10.1+/-0.31 pA/pF (n=9) at +10 mV (p<0.001). Increase of I(Ca,L) density was caused by both, increased expression levels of the alpha 1C subunit of L-type calcium channel and a pronounced increment of the single-channel activity (availability 81.8+/-3.15% versus 37.1+/-7.01%; open probability 12.8+/-3.09% versus 1.0+/-0.62%, p<0.01). Moreover, testosterone pretreatment significantly increased the frequency of Ca2+ sparks and improved myocytes contractility without altering SR Ca2+ load. All chronic effects could be inhibited by flutamide. In contrast acute testosterone administration significantly reduced I(Ca,L) density. Indeed, on the single-channel level acute testosterone application completely reversed the chronic testosterone-mediated effects, and antagonized the chronic testosterone effects on Ca2+ spark frequency, which was unaffected by flutamide. Thus, testosterone pretreatment activates I(Ca,L) via nuclear receptor-mediated pathways, while testosterone acutely blocks I(Ca,L) in a direct manner. Thus, testosterone chronically affects the basal level of intracellular Ca2+ handling, which in addition rapidly may be modulated by acute changes of hormone levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号