首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transmission from the vertebrate host to the mosquito vector represents a major population bottleneck in the malaria life cycle that can successfully be targeted by intervention strategies. However, to date only about 25 parasite proteins expressed during this critical phase have been functionally analysed by gene disruption. We describe the first systematic, larger scale generation and phenotypic analysis of Plasmodium berghei knockout (KO) lines, characterizing 20 genes encoding putatively secreted proteins expressed by the ookinete, the parasite stage responsible for invasion of the mosquito midgut. Of 12 KO lines that were generated, six showed significant reductions in parasite numbers during development in the mosquito, resulting in a block in transmission of five KOs. While expression data, time point of essential function and mutant phenotype correlate well in three KOs defective in midgut invasion, in three KOs that fail at sporulation, maternal inheritance of the mutant phenotype suggests that essential function occurs during ookinete formation and thus precedes morphological abnormalities by several days.  相似文献   

2.
Completion of the complex developmental program of Plasmodium in the mosquito is essential for parasite transmission, yet this part of its life cycle is still poorly understood. In recent years, considerable progress has been made in the identification and characterization of genes expressed during parasite development in the mosquito. This line of investigation was greatly facilitated by the availability of the genome sequence of several Plasmodium, and by the application of approaches such as proteomics, microarrays, gene disruption by homologous recombination (gene knockout) and by use of subtraction libraries. Here, we review what is presently known about genes expressed in gametocytes and during the Plasmodium life cycle in the mosquito.  相似文献   

3.
Functional analysis of Plasmodium genes by classical reverse genetics is currently limited to mutants that are viable during erythrocytic schizogony, the pathogenic phase of the malaria parasite where transfection is performed. Here, we describe a conceptually simple experimental approach to study the function of genes essential to the asexual blood stages in a subsequent life cycle stage by a promoter-swap approach. As a proof of concept we targeted the unconventional class XIV myosin MyoA, which is known to be required for Toxoplasma gondii tachyzoite locomotion and host cell invasion. By placing the corresponding Plasmodium berghei gene, PbMyoA, under the control of the apical membrane antigen 1 (AMA1) promoter, expression in blood stages is maintained but switched off during transmission to the insect vector, i.e. ookinetes. In those mutant ookinetes gliding motility is entirely abolished resulting in a complete block of life cycle progression in Anopheles mosquitoes. Similar approaches should permit the analysis of gene function in the mosquito forms that are shared with the erythrocytic stages of the malaria parasite.  相似文献   

4.
5.
The malaria parasite, Plasmodium, has evolved an intricate life cycle that includes stages specific to a mosquito vector and to the vertebrate host. The mosquito midgut represents the first barrier Plasmodium parasites encounter following their ingestion with a blood meal from an infected vertebrate. Elucidation of the molecular interaction between the parasite and the mosquito could help identify novel approaches to preventing parasite development and subsequent transmission to vertebrates. We have used an integrated Bulked Segregant Analysis-Differential Display (BSA-DD) approach to target genes expressed that are in the midgut and located within two genome regions involved in determining susceptibility to P. gallinaceum in the mosquito Aedes aegypti. A total of twenty-two genes were identified and characterized, including five genes with no homologues in public sequence databases. Eight of these genes were mapped genetically to intervals on chromosome 2 that contain two quantitative trait loci (QTLs) that determine susceptibility to infection by P. gallinaceum. Expression analysis revealed several expression patterns, and ten genes were specifically or preferentially expressed in the midgut of adult females. Real-time PCR quantification of expression with respect to the time of blood meal ingestion and infection status in mosquito strains permissive and refractory for malaria revealed a differential expression pattern for seven genes. These represent candidate genes that may influence the ability of the mosquito vector to support the development of Plasmodium parasites. Here we describe their isolation and discuss their putative roles in parasite-mosquito interactions and their use as potential targets in strategies designed to block transmission of malaria.  相似文献   

6.
Parasites that cause malaria must complete a complex life cycle in Anopheles vector mosquitoes in order to be transmitted from human to human. Previous gene-silencing studies have shown the influence of mosquito immunity in controlling the development of Plasmodium. Thus, parasite survival to the oocyst stage increased when the parasite antagonist gene LRIM1 (leucine-rich repeat immune protein 1) of the mosquito was silenced, but decreased when the C-type lectin agonist gene CTL4 or CTLMA2 (CTL mannose binding 2) was silenced. However, such effects were shown for infections of the human mosquito vector Anopheles gambiae with the rodent parasite Plasmodium berghei. Here, we report the first results of A. gambiae gene silencing on infection by sympatric field isolates of the principal human pathogen P. falciparum. In contrast with the results obtained with the rodent parasite, silencing of the same three genes had no effect on human parasite development. These results highlight the importance of following up discoveries in laboratory model systems with studies on natural parasite-mosquito interactions.  相似文献   

7.
Plasmodium yoelii is a rodent parasite commonly used as a model to study malaria infection. It is the preferred model parasite for liver-stage immunological studies and is also widely used to study hepatocyte, erythrocyte and mosquito infection. We have generated a P. yoelii yoelii 17XNL line that is stably transfected with the green fluorescent protein (gfp) gene. This parasite line constitutively expresses high levels of GFP during the complete parasite life cycle including liver, blood and mosquito stages. These fluorescent parasites can be used in combination with fluorescence activated cell sorting or live microscopy for a wide range of experimental applications.  相似文献   

8.
To complete their life cycle, Plasmodium parasites must survive the environment in the insect host, cross multiple barriers including epithelial layers, and avoid destruction by the mosquito immune system. Completion of the Anopheles gambiae and Plasmodium falciparum genomes has opened the opportunity to apply high throughput methods to the analysis of gene function. The burst of information generated by these approaches and the use of molecular markers to investigate the cell biology of these interactions is broadening our understanding of this complex system. This review discusses our current understanding of the critical interactions that take place during the journey of Plasmodium through the mosquito host, with special emphasis on the responses of midgut epithelial cells to parasite invasion.  相似文献   

9.
Plasmodium falciparum gametocytes: still many secrets of a hidden life   总被引:3,自引:0,他引:3  
Sexual differentiation and parasite transmission are intimately linked in the life cycle of malaria parasites. The specialized cells providing this crucial link are the Plasmodium gametocytes. These are formed in the vertebrate host and are programmed to mature into gametes emerging from the erythrocytes in the midgut of a blood-feeding mosquito. The ensuing fusion into a zygote establishes parasite infection in the insect vector. Although key mechanisms of gametogenesis and fertilization are becoming progressively clear, the fundamental biology of gametocyte formation still presents open questions, some of which are specific to the human malaria parasite Plasmodium falciparum. Developmental commitment to sexual differentiation, regulation of stage-specific gene expression, the profound molecular and cellular changes accompanying gametocyte specialization, the requirement for tissue-specific sequestration in P. falciparum gametocytogenesis are proposed here as areas for future investigation. The epidemiological relevance of parasite transmission from humans to mosquito in the spread of malaria and of Plasmodium drug resistance genes indicates that understanding molecular mechanisms of gametocyte formation is highly relevant to design strategies able to interfere with the transmission of this disease.  相似文献   

10.
Plasmodium, the causative agent of malaria, has many morphologically and functionally distinct developmental stages. In the mosquito host alone, there are five transitions during the development of a gametocyte into a sporozoite. Determining which genes are expressed at the different developmental stages is vital to our understanding of the parasite. There are a growing number of techniques designed to study gene expression, including microarray. Here, Johannes Dessens, Gabrielle Margos, Maria del Carmen Rodriguez and Robert Sinden describe a novel method: suppression subtractive hybridization (SSH) and its successful application in obtaining mosquito midgut stage-specific genes of Plasmodium.  相似文献   

11.
12.
Research on Plasmodium sporozoite biology aims at understanding the developmental program steering the formation of mature infectious sporozoites - the transmission stage of the malaria parasite. The recent identification of genes that are vital for sporozoite egress from oocysts and subsequent targeting and transmigration of the mosquito salivary glands allows the identification of mosquito factors required for life cycle completion. Mature sporozoites appear to be equipped with the entire molecular repertoire for successful transmission and subsequent initiation of liver stage development. Innovative malaria intervention strategies that target the early, non-pathogenic phases of the life cycle will crucially depend on our insights into sporozoite biology and the underlying molecular mechanisms that lead the parasite from the mosquito midgut to the liver.  相似文献   

13.
The Cysteine Repeat Modular Proteins (PCRMP1-4) of Plasmodium, are encoded by a small gene family that is conserved in malaria and other Apicomplexan parasites. They are very large, predicted surface proteins with multipass transmembrane domains containing motifs that are conserved within families of cysteine-rich, predicted surface proteins in a range of unicellular eukaryotes, and a unique combination of protein-binding motifs, including a >100 kDa cysteine-rich modular region, an epidermal growth factor-like domain and a Kringle domain. PCRMP1 and 2 are expressed in life cycle stages in both the mosquito and vertebrate. They colocalize with PfEMP1 (P. falciparum Erythrocyte Membrane Antigen-1) during its export from P. falciparum blood-stage parasites and are exposed on the surface of haemolymph- and salivary gland-sporozoites in the mosquito, consistent with a role in host tissue targeting and invasion. Gene disruption of pcrmp1 and 2 in the rodent malaria model, P. berghei, demonstrated that both are essential for transmission of the parasite from the mosquito to the mouse and has established their discrete and important roles in sporozoite targeting to the mosquito salivary gland. The unprecedented expression pattern and structural features of the PCRMPs thus suggest a variety of roles mediating host-parasite interactions throughout the parasite life cycle.  相似文献   

14.
Plasmodium, the causative agent of malaria, has to undergo sexual differentiation and development in anopheline mosquitoes for transmission to occur. To isolate genes specifically induced in both organisms during the early stages of Plasmodium differentiation in the mosquito, two cDNA libraries were constructed, one enriched for sequences expressed in differentiating Plasmodium berghei ookinetes and another enriched for sequences expressed in Anopheles stephensi guts containing invading ookinetes and early oocysts. Sequencing of 457 ookinete library clones and 652 early oocyst clones represented 175 and 346 unique expressed sequence tags, respectively. Nine of 13 Plasmodium and four of the five Anopheles novel expressed sequence tags analyzed on Northern blots were induced during ookinete differentiation and mosquito gut invasion. Ancaspase-7, an Anopheles effector caspase, is proteolytically activated during Plasmodium invasion of the midgut. WARP, a gene encoding a Plasmodium surface protein with a von Willebrand factor A-like adhesive domain, is expressed only in ookinetes and early oocysts. An anti-WARP polyclonal antibody strongly inhibits (70-92%) Plasmodium development in the mosquito, making it a candidate antigen for transmission blocking vaccines. The present results and those of an accompanying report (Srinivasan, P., Abraham, E. G., Ghosh, A. K., Valenzuela, J., Ribeiro, J. M. C., Dimopoulos G., Kafatos, F. C., Adams, J. H., and Jacobs-Lorena, M. (2004) J. Biol. Chem. 279, 5581-5587) provide the foundation for further analysis of Plasmodium differentiation in the mosquito and of mosquito responses to the parasite.  相似文献   

15.
Migration of the protozoan parasite Plasmodium through the mosquito is a complex and delicate process, the outcome of which determines the success of malaria transmission. The mosquito is not simply the vector of Plasmodium but, in terms of the life cycle, its definitive host: there, the parasite undergoes its sexual development, which results in colonization of the mosquito salivary glands. Two of the parasite's developmental stages in the mosquito, the ookinete and the sporozoite, are invasive and depend on gliding motility to access, penetrate and traverse their host cells. Recent advances in the field have included the identification of numerous Plasmodium molecules that are essential for parasite migration in the mosquito vector.  相似文献   

16.
Unlike most eukaryotes, many apicomplexan parasites contain only a few unlinked copies of ribosomal RNA (rRNA) genes. Based on stage-specific expression of these genes and structural differences among the rRNA molecules it has been suggested that Plasmodium spp. produce functionally different ribosomes in different developmental stages. This hypothesis was investigated through comparison of the structure of the large subunit rRNA molecules of the rodent malaria parasite, Plasmodium berghei, and by disruption of both of the rRNA gene units that are transcribed exclusively during development of this parasite in the mosquito (S-type rRNA gene units). In contrast to the human parasite, Plasmodium falciparum, we did not find evidence of structural differences in core regions of the distinct large subunit rRNAs which are known to be associated with catalytic activity including the GTPase site that varies in P. falciparum. Knockout P. berghei parasites lacking either of the S-type gene units were able to complete development in both the vertebrate and mosquito hosts. These results formally exclude the hypothesis that two functionally different ribosome types distinct from the predominantly blood stage-expressed A-type ribosomes, are required for development of all Plasmodium species in the mosquito. The maintenance of two functionally equivalent rRNA genes might now be explained as a gene dosage phenomenon.  相似文献   

17.
分离和研究疟疾感染蚊的差异表达基因 ,对阐明媒介与疟原虫之间相互作用及其分子机制尤为重要。利用已建立的斯氏按蚊感染约氏疟原虫的差减cDNA库的进行表达筛选 ,发现表达增高基因中有一个编码与黑腹果蝇泛素羧端水解酶高度同源蛋白的序列。相似性比较显示该编码序列在氨基酸水平与已知的冈比亚按蚊EST序列对应部位的同源性为 89% ,与果蝇和人类的同源性均为 63%。模拟Northern印迹的表达动态分析提示 ,感染后至少 1~ 7天内该基因在蚊体内的表达显著增高 ,与疟原虫发育动合子穿越蚊中肠壁和子孢子从卵囊向蚊眼涎腺移行等关键阶段相一致。目前对有关蚊天然免疫系统激活的泛素途径所知甚少 ,现有结果提示该基因与疟原虫感染相关 ,它的克隆和表达分析有可能推测其在疟原虫感染中所起的作用  相似文献   

18.
Tuteja R 《The FEBS journal》2007,274(18):4670-4679
Malaria is caused by protozoan parasites of the genus Plasmodium and is a major cause of mortality and morbidity worldwide. These parasites have a complex life cycle in their mosquito vector and vertebrate hosts. The primary factors contributing to the resurgence of malaria are the appearance of drug-resistant strains of the parasite, the spread of insecticide-resistant strains of the mosquito and the lack of licensed malaria vaccines of proven efficacy. This minireview includes a summary of the disease, the life cycle of the parasite, information relating to the genome and proteome of the species lethal to humans, Plasmodium falciparum, together with other recent developments in the field.  相似文献   

19.
We performed a forward genetic screen, using Drosophila as a surrogate mosquito, to identify host factors required for the growth of the avian malaria parasite, Plasmodium gallinaceum. We identified 18 presumed loss-of-function mutants that reduced the growth of the parasite in flies. Presumptive mutation sites were identified in 14 of the mutants on the basis of the insertion site of a transposable element. None of the identified genes have been previously implicated in innate immune responses or interactions with Plasmodium. The functions of five Anopheles gambiae homologs were tested by using RNAi to knock down gene function followed by measuring the growth of the rodent parasite, Plasmodium berghei. Loss of function of four of these genes in the mosquito affected Plasmodium growth, suggesting that Drosophila can be used effectively as a surrogate mosquito to identify relevant host factors in the mosquito.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号