首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Coral species throughout the world are facing severe environmental pressures. Because of this, we began cryobiological studies on the sperm of the mushroom coral, Fungia scutaria. We determined that F. scutaria sperm had a mean length of 56 microm and head diameter of 2.5 microm, and a mean spontaneous ice nucleation temperature of -37.2 +/- 1.7 degrees C. When the sperm were exposed to the cryoprotectant glycerol for 5 or 20 min (at 10% v/v), no fertilized larvae were produced. However, when sperm were exposed for 20 min to propylene glycol (10% v/v), fertilizations were produced at the same rate as untreated control eggs and sperm (P > 0.05), but slightly less for dimethyl sulfoxide (10% v/v) (P < 0.05). Regardless, dimethyl sulfoxide caused less osmotic damage to the sperm membrane than did propylene glycol. Therefore, we used the dimethyl sulfoxide (10% v/v) to develop cryopreservation protocols that yielded good post-thaw morphology and motility (>95%) for coral sperm.  相似文献   

3.
Coral reefs are the most biodiverse of all marine ecosystems. Bacteria are known to be abundant and active in seawater around corals, inside coral tissues, and within their surface microlayer. Very little is known, however, about the structure, composition and maintenance of these bacterial communities. In the current study we characterize the culturable bacterial community within the mucus of healthy specimens of the Red Sea solitary coral Fungia scutaria. This was achieved using culture-based methods and molecular techniques for the identification of the bacterial isolates. More than 30% of the isolated bacteria were novel species and a new genus. The culturable heterotrophic bacterial community of the mucus of this coral is composed mainly of the bacterial groups Gammaproteobacteria, Alphaproteobacteria and of Actinobacteria. This study provides the first evidence of actinomycetes isolated from corals.  相似文献   

4.
5.
Fungia scutaria spawned vigorously with a lunar beriodicity during the summer months of 1981 and 1982. Spawning activity declined in the fall of both years and was absent in winter and spring (1983). There was only one short spawning event per lunar cycle. Each event occurred in the evening between 1700 and 1900 hours 1 to 4 days following the full moon. Fungia scutaria exhibits gonochorism. Females ejected eggs through their mouths into the seawater above. Many of these negatively buoyant eggs settled onto the oral discs and were moved off the edge by ciliary-mucoid activity. Spermatoza from males were similarly expelled in a jet of gastrovascular fluid. Spawned eggs were small and lacked endosymbiotic zooxanthellae. Rapid development led to ciliated solid planulae by the next morning. Within 24 h a mouth had begun to develop. Planulae may have been able to feed within 39 h. Infection with zooxanthellae occurred 4–5 days following spawning. Planulae may have become competent for settlement by 7 days, but attempts to docment settlement produced ambiguous results.  相似文献   

6.
Scleractinian corals may acquire Symbiodinium from their parents (vertically) or from the environment (horizontally). In the present study, adult colonies of the coral Acropora longicyathus from One Tree Island (OTI) on the southern Great Barrier Reef (Australia) acquired two distinct varieties of symbiotic dinoflagellates (Symbiodinium) from the environment. Adult colonies had either Symbiodinium from clade C (86.7%) or clade A (5.3%), or a mixture of both clades A and C (8.0% of all colonies). In contrast, all 10-day-old juveniles were associated with Symbiodinium from clade A, while 83-day-old colonies contained clades A, C and D even though they were growing at the same location. Symbiodinium from clade A were dominant in both 10- and 83-day-old juveniles (99 and 97% of all recruits, respectively), while clade D was also found in 31% of 83-day-old juveniles. Experimental manipulation also revealed that parental association (with clade A or C), or the location within the OTI reef, did not influence which clade of symbiont was acquired by juvenile corals. The differences between the genetic identity of populations of Symbiodinium resident in juveniles and adult A. longicyathus suggest that ontogenetic changes in the symbiosis may occur during the development of scleractinian corals. Whether or not these changes are due to host selective processes or differences in the physical environment associated with juvenile versus adult colonies remains to be determined.  相似文献   

7.
Survival of pelagic marine larvae is an important determinant of dispersal potential. Despite this, few estimates of larval survival are available. For scleractinian corals, few studies of larval survival are long enough to provide accurate estimates of longevity. Moreover, changes in mortality rates during larval life, expected on theoretical grounds, have implications for the degree of connectivity among reefs and have not been quantified for any coral species. This study quantified the survival of larvae from five broadcast-spawning scleractinian corals (Acropora latistella, Favia pallida, Pectinia paeonia, Goniastrea aspera, and Montastraea magnistellata) to estimate larval longevity, and to test for changes in mortality rates as larvae age. Maximum lifespans ranged from 195 to 244 d. These longevities substantially exceed those documented previously for coral larvae that lack zooxanthellae, and they exceed predictions based on metabolic rates prevailing early in larval life. In addition, larval mortality rates exhibited strong patterns of variation throughout the larval stage. Three periods were identified in four species: high initial rates of mortality; followed by a low, approximately constant rate of mortality; and finally, progressively increasing mortality after approximately 100 d. The lifetimes observed in this study suggest that the potential for long-distance dispersal may be substantially greater than previously thought. Indeed, detection of increasing mortality rates late in life suggests that energy reserves do not reach critically low levels until approximately 100 d after spawning. Conversely, increased mortality rates early in life decrease the likelihood that larvae transported away from their natal reef will survive to reach nearby reefs, and thus decrease connectivity at regional scales. These results show how variation in larval survivorship with age may help to explain the seeming paradox of high genetic structure at metapopulation scales, coupled with the maintenance of extensive geographic ranges observed in many coral species. Communicated by Environment Editor Prof. van Woesik.  相似文献   

8.
Coral Reefs - Planktivorous fishes are known to consume coral larvae due to their high nutritional value that can benefit both the individual and their progeny. However, how the consumption of...  相似文献   

9.
Coral planulae settle, then metamorphose and form polyps. This study examined the morphological process of metamorphosis from planulae into primary polyps in the scleractinian corals Acropora nobilis and Acropora microphthalma, using the cnidarian neuropeptide Hym-248. These two species release eggs that do not contain Symbiodinium. The mode of acquisition of freshly isolated Symbiodinium (zooxanthellae) (FIZ) by the non-symbiotic polyp was also examined. Non-Hym-248 treated swimming Acropora planulae did not develop blastopore, mesenteries or coelenteron until the induction of metamorphosis 16 days after fertilization. The oral pore was formed by invagination of the epidermal layer after formation of the coelenteron in metamorphosing polyps. At 3 days after settlement and metamorphosis, primary polyps exposed to FIZ established symbioses with the Symbiodinium. Two–four days after exposure to FIZ, the distribution of Symbiodinium was limited to the gastrodermis of the pharynx and basal part of the polyps. Eight–ten days after exposure to FIZ, Symbiodinium were present in gastrodermal cells throughout the polyps.  相似文献   

10.
Some scleractinian coral larvae have an extraordinary capacity to delay metamorphosis, and this is reflected in the large geographic range of many species. Coral eggs typically contain a high proportion of wax esters, which have been hypothesized to provide a source of energy for long-distance dispersal. To better understand the role of lipids in the dispersal of broadcast spawning coral larvae, ontogenetic changes in the lipid and fatty acid composition of Goniastrea retiformis were measured from the eggs until larvae were 30 days old. Egg biomass was 78.8 ± 0.5% lipids, 86.3 ± 0.2% of which were wax esters, 9.3 ± 0.0% polar lipids, 4.1 ± 0.2% sterols, and 0.3 ± 0.1% triacylglycerols. The biomass of wax esters declined significantly through time, while polar lipids, sterols and triacylglycerols remained relatively constant, suggesting that wax esters are the prime source of energy for development. The most prevalent fatty acid in the eggs was palmitic acid, a marker of the dinoflagellate Symbiodinium, highlighting the importance of symbiosis in coral reproductive ecology. The proportion of polyunsaturated fatty acids declined through time, suggesting that they are essential for larval development. Interestingly, triacylglycerols are only abundant in the propagules that contain Symbiodinium, suggesting important differences in the energetic of dispersal among species with vertical and horizontal transmission of symbionts.  相似文献   

11.
Reef-building scleractinian corals widely engage in symbiotic relationships with Symbiodinium dinoflagellates (zooxanthellae), which reside inside cells of the gastrodermis. In most cases, sexually produced larvae acquire their symbionts from the environment in the early developmental stages preceding settlement; however, some scleractinian corals maternally "seed" their oocytes with symbionts, and these symbionts are reported to be restricted to the gastrodermis at the time of its formation (gastrulation). A precise mechanism for how Symbiodinium are translocated to endoderm in these seeded species was previously unknown. In order to examine the process of endoderm formation and Symbiodinium localization during gastrulation, we have examined two species of "robust" clade scleractinians: Fungia scutaria (nonseeded) and Pocillopora meandrina (maternally seeded). We determined that both species, independent of whether or not they are seeded, undergo a "nutritive" stage before gastrulation, wherein lipid-rich cells (F. scutaria) or membrane-bound cellular fragments (P. meandrina) are passed to the blastocoel where they are subsequently taken up by the definitive endoderm. This emergent property of anthozoan development has been co-opted to facilitate the movement of Symbiodinium to the blastocoel (future site of endoderm), in the seeded species, where they are later phagocytosed by the newly formed definitive endoderm. Additionally, both species of robust clade scleractinians examined gastrulate by way of invagination, as do the majority of anthozoans. This invagination differs from the prawn chip-type gastrulation seen in the complex clade corals and provides evidence for a possible linkage between gastrulation type and phylogenetic history.  相似文献   

12.
In Japan, zooxanthellate Palythoa tuberculosa Klunzinger and Palythoa mutuki Verrill (Anthozoa: Hexacorallia: Zoantharia) are found over a 1,000 + km latitudinal range, often in environments where most other zooxanthellate anthozoans are not found (i.e. tidal lagoon pools, around shallow water hydrothermal vents, subtropical rocky shorelines). Sequences of internal transcribed spacer of ribosomal DNA (ITS-rDNA) of the symbiotic dinoflagellate genus Symbiodinium (zooxanthellae) Freudenthal (Order Suessiales) from P. tuberculosa and P. mutuki from several locations in Japan (34°11′N–24°16′N) were analysed. Unexpectedly, despite the ability of the genus Palythoa to be flexible in association with different Symbiodinium subclades, most (35 of 36) Palythoa investigated here specifically associate with subclade C1 and closely related types. Symbiodinium subclade C1 has been characterized as a “generalist” in terms of the ability to associate with a range of hosts, but present results suggest that subclade C1 may also be a “generalist” in terms of being able to live in a variety of environments over a latitudinal range. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

13.
Three cDNAs encoding actins were identified in two culturable strains (clades A and F) of the symbiotic dinoflagellates Symbiodinium spp. In a molecular phylogenetic analysis these actin sequences formed a monophyletic group with known dinoflagellate actins, remote from Syact-p that had been isolated from a clade A Symbiodinium strain (HG39). One of the newly identified actin sequences (SyAct-F1) was the most closely related to partial actin cDNA sequences (named AGfact-p and AFcact-p) isolated from adult colonies of two reef corals (Galaxea fascicularis and Favites chinensis) that were inhabited by Symbiodinium spp., suggesting the possibility that the latter two were from the symbionts. Partial AFcact-p sequences could be amplified by PCR using genomic DNA prepared from a symbiotic adult colony of F. chinensis as the template, but not from planula larvae in which zooxanthellae could not be detected, also arguing for the origin of AFcact-p in the symbiont. An expression analysis showed that the levels of the SyAct-A1 mRNA were comparable in symbiotic and non-symbiotic states, and also in motile and non-motile phases in a cultured condition, suggesting its usefulness as a constitutively expressed control gene in expression analysis of Symbiodinium mRNAs.  相似文献   

14.
Demographic connectivity requires both the dispersal of individuals between sub-populations, and their subsequent contribution to population dynamics. For planktonic, non-feeding marine larvae, the capacity to delay settlement enables greater dispersal distances, but the energetic cost of delayed settlement has been shown to adversely impact post-settlement fitness in several taxa. Here, we assess whether delayed settlement influences mortality rates or growth rates for the first 6 weeks following settlement of the scleractinian coral, Acropora tenuis. Coral larvae that were settled at 2, 4, and 6 weeks after spawning, and then deployed in the field, showed negligible effects of delayed settlement on post-settlement survival and time to initial budding for colony formation. Between-cohort differences in budding rate appeared to be explained by temporal variation in the post-settlement acquisition of zooxanthellae. The potential for coral larvae to remain in the pelagic zone for increased periods of time with little to no effect on post-settlement survival and growth suggests that the capacity for delayed settlement is likely to have meaningful demographic consequences for broadcast-spawning reef-building corals, and that the predicted trade-off between delayed settlement and post-settlement fitness is less applicable to reef-building scleractinian corals than other taxa with non-feeding larvae.  相似文献   

15.
Active restoration initiatives are increasingly considered in natural resource management. Laboratory‐reared coral larvae and recruits have been proposed for stock production but it is unknown if their use impacts subsequent symbiosis once transplanted to the reef. We exposed laboratory and field settled aposymbiotic recruits (recently settled <1 month) to Symbiodinium in the wild, then analyzed the acquired communities using ITS‐2 sequencing. There was no significant difference between treatments based on overall community and diversity metrics, or differential abundance of individual taxa. These results suggest that early acquisition is analogous and thus supports the use of either life‐stage as an option for reef restoration.  相似文献   

16.
Porites panamensis is a hermatypic brooder coral endemic to, and distributed along, the Eastern Tropical Pacific, and is considered a species vulnerable to local effects because it has limited capacity for long‐distance dispersal (and low genetic diversity). Although larvae of P. panamensis have been previously shown to recruit to artificial settlement platforms, they have never been observed in the water column. The present study describes the reproductive behavior of P. panamensis, with a focus on using molecular tools to document evidence for a larval planktonic stage and for successful recruitment. Larvae collected from the water column, and recruitment on natural and artificial substrata were documented. Phylogenetic analysis of two ribosomal markers, 18s rRNA and ITS (ITS1‐5.8‐ITS2), and one mitochondrial marker, cytochrome oxidase subunit 1 (cox1), confirmed the taxonomic identity of larvae, and showed that larvae and recruits have genotypes similar to adults of P. panamensis. Lipid vacuoles and Symbiodinium sp. were present in the gastrodermis of all larvae. A total of 12 and 371 recruits settled on artificial and natural substrates, respectively, and the recruitment rate differed significantly over time. By documenting the reproductive success of the species, we show the potential for existing individuals both to maintain the population in the study area and to contribute to maintenance of the coral reef community in the coming decades.  相似文献   

17.
The success of coral reefs is due to obligate mutualistic symbioses involving invertebrates and photosynthetic dinoflagellate symbionts belonging to the genus Symbiodinium. In the Caribbean, the vast majority of octocorals and other invertebrate hosts associate with Symbiodinium clade B, and more selectively, with a single lineage of this clade, Symbiodinium B1/B184. Although B1/B184 represents the most prevalent Symbiodinium in the Caribbean, there is little evidence supporting fine-scale diversity and host-alga specificity within this lineage. We explored simultaneously the questions of diversity and specificity in Symbiodinium B1/B184 by sequencing the flanking regions of two polymorphic microsatellites from a series of Symbiodinium clade B cultures along with Symbiodinium B1/B184 populations of the octocorals Pseudopterogorgia elisabethae, P. bipinnata and Gorgonia ventalina. Seven unique sequence variants were identified based on concatenation of the two loci. Phylogenetic analyses of these variants, which we refer to as phylotypes, recognized five as belonging to B1/B184, thus providing the first evidence of distinct taxa within this Symbiodinium lineage. Furthermore, sympatric P. elisabethae and P. bipinnata at San Salvador in the Bahamas were found to harbour distinct Symbiodinium B1/B184 phylotypes, demonstrating unequivocally the existence of fine-scale specificity between Caribbean octocorals and these algae. Taken together, this study exemplifies the complex nature of Symbiodinium biodiversity and specificity.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号