首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four varieties of maize differing in drought resistance and geographical origin (Swabi White and Shaheen from Pakistan, Garbo and Goldprinz from Germany) were analyzed for their proline and abscisic acid (ABA) accumulation during a prolonged water stress period. Proline levels increased continuously during the stress period in all the four varieties, but to different amounts. The drought-susceptible varieties Shaheen and Goldprinz produced higher levels of proline than the drought-resistant varieties Swabi White and Garbo. A negative correlation was also found between maximal ABA contents and degree of drought resistance during prolonged stress of younger plants. ABA levels did not increase steadily, but reached a maximum long before the end of the stress phase, and then declined. The results are discussed in relation to the possibility of using proline and ABA levels as biochemical indicators of resistance against drought.  相似文献   

2.
The involvement of abscisic acid (ABA) in the process of leaf abscission induced by 1-aminocyclopropane-1-carboxylic acid (ACC) transported from roots to shoots in Cleopatra mandarin (Citrus reshni Hort. ex Tan.) seedlings grown under water stress was studied using norflurazon (NF). Water stress induced both ABA (24-fold) and ACC (16-fold) accumulation in roots and arrested xylem flow. Leaf bulk ABA also increased (8-fold), although leaf abscission did not occur. Shortly after rehydration, root ABA and ACC returned to their prestress levels, whereas sharp and transitory increases of ACC (17-fold) and ethylene (10-fold) in leaves and high percentages of abscission (up to 47%) were observed. NF suppressed the ABA and ACC accumulation induced by water stress in roots and the sharp increases of ACC and ethylene observed after rewatering in leaves. NF also reduced leaf abscission (7-10%). These results indicate that water stress induces root ABA accumulation and that this is required for the process of leaf abscission to occur. It was also shown that exogenous ABA increases ACC levels in roots but not in leaves. Collectively, the data suggest that ABA, the primary sensitive signal to water stress, modulates the levels of ethylene, which is the hormonal activator of leaf abscission. This assumption implies that root ACC levels are correlated with root ABA amounts in a dependent way, which eventually links water status to an adequate, protective response such as leaf abscission.  相似文献   

3.
An endogenous α-amylase inhibitor was found to be synthesized in embryos of developing barley grain (Hordeum vulgare cv Bonanza). Accumulation of this protein occurred late in development (stage IV), at the same time that endogenous abscisic acid (ABA) showed a large increase. The inhibitor could be induced up to 23-fold in isolated immature embryos (stage III) by culture in ABA. Precocious germination was also blocked in stage III embryos by ABA. Dehydration stress on the isolated immature embryos also induced higher levels of the inhibitor and ABA. An even greater response to dehydration stress was observed in young seedlings, where inhibitor content increased 20-fold and ABA increased 80-fold during water stress. The high degree of correlation between ABA and inhibitor contents in in situ embryos, dehydrated embryos and young seedlings, as well as the increase in inhibitor caused by exogenously applied ABA to isolated embryos, suggests that increased α-amylase inhibitor synthesis in response to dehydration stress is mediated by ABA.  相似文献   

4.
The relationship between the bulk abscisic acid (ABA) content, ABA compartmental redistribution, and chloroplast ultrastructural changes was studied in leaves of lavender ( Lavandula stoechas L.) plants subjected to water stress. ABA was uniformly distributed in the cytosol, nucleus, chloroplasts, and cell walls of mesophyll cells in well-watered plants. In plants subjected to water stress (−2.6 MPa water potential) the bulk leaf ABA increased from 900 to 3 600 pmol g−1 fresh weight. At the ultrastructural level, the first indication of this rise in ABA was a 4-fold increase in ABA immunolabeling in the cell wall in which the highest labeling values were recorded. This increase in apoplastic ABA in lavender was not attributable to ABA release from the chloroplast, because a simultaneous increase in ABA labeling was observed in both the chloroplast and nucleus (2- and 3-fold, respectively). Water stress induced a progressive increase in bulk leaf ABA concentration to 13 600 pmol g−1 fresh weight coincident, with the highest immunolabeling of ABA in the nucleus and chloroplast. Under severe water stress, the chloroplast membrane broke down, resulting in leakage of ABA from the chloroplast. The stress-induced increase of ABA in chloroplasts and nuclei may serve a function other than affecting stomatal movement.  相似文献   

5.
When excised second leaves from 2-week-old barley (Hordeum vulgare var Larker) plants were incubated in a wilted condition, abscisic acid (ABA) levels increased to 0.6 nanomole per gram fresh weight at 4 hours then declined to about 0.3 nanomole per gram fresh weight and remained at that level until rehydrated. Proline levels began to increase at about 4 hours and continued to increase as long as the ABA levels were 0.3 nanomole per gram fresh weight or greater. Upon rehydration, proline levels declined when the ABA levels fell below 0.3 nanomole per gram fresh weight.

Proline accumulation was induced in turgid barley leaves by ABA addition. When the amount of ABA added to leaves was varied, it was observed that a level of 0.3 nanomole ABA per gram fresh weight for a period of about 2 hours was required before proline accumulation was induced. However, the rate of proline accumulation was slower in ABA-treated leaves than in wilted leaves at comparable ABA levels. Thus, the threshold level of ABA for proline accumulation appeared to be similar for wilted leaves where ABA increased endogenously and for turgid leaves where ABA was added exogenously. However, the rate of proline accumulation was more dependent on ABA levels in turgid leaves to which ABA was added exogenously than in wilted leaves.

Salt-induced proline accumulation was not preceded by increases in ABA levels comparable to those observed in wilted leaves. Levels of less than 0.2 nanomole ABA per gram fresh weight were measured 1 hour after exposure to salt and they declined rapidly to the control level by 3 hours. Proline accumulation commenced at about 9 hours. Thus, ABA accumulation did not appear to be involved in salt-induced proline accumulation.

  相似文献   

6.
Two wheat (Triticum aestivum) cultivars, C306 (drought tolerant) and PBW343 (drought susceptible) were compared for their response to exogenous ABA, water stress (WS) and combined (ABA plus WS) during their seedlings growth. Their responses were studied in the form of seedlings growth, antioxidant potential of roots and shoots and expression levels of LEA genes in shoots. ABA treatment led to increase in levels of ascorbate, ascorbate to dehydroascorbate ratio, antioxidant enzymes and decreases in levels of dehydroascorbate, malondialdehyde (MDA). Decrease in biomass, ascorbate contents, ascorbate to dehydroascorbate ratios and antioxidant enzymes was more in PBW343 than in C306 under WS. Dehydroascorbate and MDA levels were higher in PBW343 than in C306 under WS. ABA plus WS improved some of these features from their levels under WS in PBW343. Proline contents were not increased significantly under ABA in both cultivars. Out of ten LEA genes studied, six LEA genes were induced more under WS than under ABA in C306 but equally induced in PBW343. Four LEA genes were induced earlier in PBW343 but later in C306. Wdhn13 was induced more under ABA than under WS in C306 while it was non-responsive to both stresses in PBW343.  相似文献   

7.
Plant responses to drought stress include proline and abscisic acid (ABA) accumulation. Proline dehydrogenase (PDH) (EC 1.4.3) is the first enzyme in the proline oxidation pathway, and its activity has been shown to decline in response to water stress (PJ Rayapati, CR Stewart [1991] Plant Physiol 95: 787-791). In this investigation, we determined whether ABA treatment affects PDH activity in a manner similar to drought stress in maize (Zea mays L.) seedlings. Four exogenous ABA treatments (0, 11, 33, and 100 micromolar ABA) were applied to well-watered maize seedlings. Mitochondria were isolated and PDH was solubilized using Nonidet P-40. PDH activity was measured by the reduction of iodonitrotetrazolium violet under proline-dependent conditions. There was no effect of ABA on PDH activity at 33 and 100 micromolar ABA, but there was a 38% decline at 11 micromolar. This decline was less than the 69% reduction in activity under drought stress. Endogenous ABA determinations and plant growth rate showed that ABA entered the plant and was affecting metabolic processes. ABA treatments had a small effect on shoot and root proline concentration, whereas drought stress caused a 220% increase in root tissues. We conclude that ABA is not part of the pathway linking drought stress and decreased PDH activity.  相似文献   

8.
Embryogenic callus of maize (Zea mays L.) inbreds B37wx, H99, H993H95, Mo17, and Pa91 accumulated proline to levels 2.1 to 2.5 times that of control callus when subjected to mannitol-induced water stress, cool temperatures (19°C) and abscisic acid (ABA). A combination of 0.53 molar mannitol plus 0.1 millimolar ABA induced a proline accumulation to about 4.5 times that of control callus, equivalent to approximately 0.18 millimoles proline per gram fresh weight of callus. Proline accumulation was directly related to the level of mannitol in the medium. Levels of ABA greater than 1.0 micromolar were required in the medium to induce proline accumulation comparable to that induced by mannitol. Mannitol and ABA levels that induced maximum accumulation of proline also inhibited callus growth and increased tolerance to cold. Proline (12 millimolar) added to the culture media also increased the tolerance of callus to 4°C. The increased cold tolerance induced by the combination of mannitol and ABA has permitted the storage of the maize inbreds A632, A634Ht, B37wx, C103DTrf, Fr27rhm, H99, Pa91, Va35, and W117Ht at 4°C for 90 days which is more than double the typical survival time of callus. These studies show that proline and conditions which induce proline accumulation increase the cold tolerance of regenerable maize callus.  相似文献   

9.
Proline accumulation and mobilization in roots of 7-d-old seedlings of wheat genotypes varying in sensitivity towards water stress were compared. Water stress was induced by polyethylene glycol (PEG-6000; osmotic potential −1.5 MPa) in the presence of 0.1 mM abscisic acid (ABA), 1 mM calcium chloride, 0.5 mM verapamil (Ca2+ channel blocker), 0.5 mM fluridone (inhibitor of ABA biosynthesis). While both the genotypes did not differ in total proline accumulation, rate of proline accumulation and utilization was higher in tolerant genotype C 306 as compared to susceptible genotype HD 2380. The treatment with ABA and CaCl2 caused further increase in proline accumulation during stress and reduced its mobilization during recovery. The membrane stability and elongation rate of roots was observed to be higher at ABA and calcium treatment in both the genotypes under stress. As was evident from inhibitor studies, the tolerant genotype was more responsive to ABA and the susceptible one to calcium. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Abscisic acid (ABA) levels in 3-mm apical root segments of slowly droughted sunflower plants (Helianthus annuus L. cv Russian Giant) were analyzed as the methyl ester by selected ion monitoring gas chromatography-mass spectrometry using characteristic ions. An internal standard, hexadeuterated ABA (d6ABA) was used for quantitative analysis. Sunflower seedlings, grown in aeroponic chambers, were slowly droughted over a 7-day period. Drought stress increased ABA levels in the root tips at 24, 72, and 168 hour sample times. Control plants had 57 to 106 nanograms per gram ABA dry weight in the root tips (leaf water potential, −0.35 to −0.42 megapascals). The greatest increase in ABA, about 20-fold, was found after 72 hours of drought (leaf water potential, −1.34 to −1.47 megapascals). Levels of ABA also increased (about 7− to 54-fold) in 3-mm apical root segments which were excised and then allowed to dessicate for 1 hour at room temperature.  相似文献   

11.
In many cultivars of Vitis vinifera periods of mild water stress during ripening are thought to increase grape quality for winemaking, even though yields may be negatively affected. Because abscisic acid (ABA) is involved in the signaling of water stress in plants, we examine the effects of the ABA signal being given without the concomitant water stress. ABA at 250 mg l−1 was sprayed weekly or biweekly from bud-burst until harvest onto the leaves of vineyard-grown plants of cv. Cabernet Sauvignon. For ABA-treated plants berry yield per bunch and per plant was significantly increased (1.5- to 2.0-fold) across three consecutive harvests (2005 through 2007). Number of berries per bunch and per plant was the primary basis for the significant crop increases, although bunches per plant also tended to increase (1.1- to 1.3-fold) across all three harvests. Other parameters assessed included number of internodes, shoot length, leaf area, leaf water potential at midday, photosynthesis, and stomatal conductance. These parameters showed no significant change with ABA treatment, although shoot length tended to be reduced, as was leaf area relative to control plants. The significantly increased fruit yields were thus accomplished without accompanying increases in leaf photosynthesis and leaf areas. Juice at harvest had equal levels of sugars (Brix) and somewhat higher levels of anthocyanins and total polyphenols relative to control values. The two latter trends continued for the resultant wine across two vintage years. In conclusion, three seasons of experimental trials have demonstrated that ABA application can significantly enhance yield per plant in the field-grown grape (cv. Cabernet Sauvignon) by favoring increased berry set without diminishing the quality of the fruit for winemaking use.  相似文献   

12.
Drought- and ABA-induced changes in photosynthesis of barley plants   总被引:1,自引:0,他引:1  
The changes caused by drought stress and abscisic acid (ABA) on photosynthesis of barley plants (Hordeum vulgare. L. cv. Alfa) have been studied. Drought stress was induced by allowing the leaves to lose 12% of their fresh weight. Cycloheximide (CHI), an inhibitor of stress-induced ABA accumulation, was used to distinguish alterations in photosynthetic reactions that are induced after drought stress in response to elevated ABA levels from those that are caused directly by altered water relations. Four hoars after imposition of drought stress or 2 h after application of ABA, Ihe bulk of the leaf's ABA content measured by enzyme-amplified ELISA, increased 14- and 16-fold, respectively. CHI fully blocked the stress-induced ABA accumulation. Gas exchange measurements and analysis of enzyme activities were used to study the reactions of photosynthesis to drought stress and ABA. Leaf dehydration or ABA treatment led to a noticeable decrease in both the initial slope of the curves representing net photosynthetic rate versus intercellular CO2 concentration and the maximal rate of photosynthesis; dehydration of CHI-treated plants showed much slower inhibition of the latter. The calculated values of the intercellular CO2 concentration, CO2 compensation point and maximal carboxylating efficiency of ribulose 1,5-bisphosphate (RuBP) carboxylase support the suggestion that biochemical factors are involved in the response of photosynthesis to ABA and drought stress. RuBP carboxylase activity was almost unaffected in ABA- and CHI-treated, non-stressed plants. A drop in enzyme activity was observed after leaf dehydration of the control and ABA-treated plants. When barley plants were supplied with ABA, the activity of carbonic anhydrase (CA, EC 4.2.2.1) increased more than 2-fold. Subsequent dehydration caused an over 1.5-fold increase in CA activity of the control plants and a more than 2.5-fold increase in ABA-treated plants. Dehydration of CHI-treated plants caused no change in enzyme activity. It is suggested that increased activity of CA is a photosynthetic response to elevated ABA concentration.  相似文献   

13.
The goal of the present study was to obtain new insights into the mechanisms underlying drought stress adaptations in barley plants. For this purpose we evaluated changes in endogenous abscisic acid (ABA) and its glucose ester conjugate (ABAGE), as well as changes in proline content, water relations and growth parameters of five barley genotypes with different drought resistance characteristics. Different responses among the five genotypes studied (Ardahoui, Pakistan, Rihane, Manel ad Roho) led to changes in their pattern of growth and development under drought conditions. Water stress induced a reduction in relative water content, as well as an increase in proline content and endogenous ABA concentrations in all tested genotypes. The lack of water led to a 2-fold increase in proline content for var. Rihane and to a 5-fold increase in endogenous ABA for cv. Ardhaoui. Also, increases in endogenous ABAGE in all genotypes except for cv. Ardhaoui were observed. Our results show that changes in ABA and ABAGE correlated with variations in proline content and growth parameters of these genotypes which present different mechanisms to cope with water stress. We also suggest that new regulatory mechanisms implying ABA mobilization can be of great importance in adaptation of barley to drought.  相似文献   

14.
Lettuce (Lactuca sativa L.) seedlings were subjected to anoxic stress after ABA-pretreatment (ABA-PT) or hypoxic-pretreatment (H-PT). The H-PT increased the survivability of the anoxia in roots of the seedlings by 5.2-fold compared to that of non-pretreated (N-PT) seedlings. ABA-PT also increased the survivability at concentrations greater than 1 microM, and the survivability increased with increasing ABA doses. At 100 microM ABA, the survivability was 4.5-fold greater than that of N-PT seedlings. During pretreatment periods, alcohol dehydrogenase (ADH, EC 1.1.1.1) activity in the roots became 3.1- and 3.4-fold greater than that of N-PT seedlings following 100 microM ABA-PT and H-PT seedlings, respectively. After the onset of anoxic stress, ADH activities in all roots increased, but the activities in H-PT and ABA-PT roots remained much greater than that in N-PT roots, and the average ethanol production rate for the initial 6 h was 5.3, 4.0 and 1.4 micromol g(-1) FW h(-1) for H-PT, ABA-PT and N-PT roots, respectively. Roots of the seedlings lost ATP rapidly under anoxic stress; however, the decrease in ATP was much slower in the ABA-PT and H-PT seedlings than in the N-PT seedlings. These results suggest that the ABA-PT and H-PT may maintain ATP levels due to activation of ethanolic fermentation, which may be one of the causes of the increasing anoxia tolerance in the seedling roots. Measurement of endogenous ABA levels, however, showed that ABA levels did not increase during the H-PT, suggesting that the H-PT does not increase tolerance through an increase in ABA levels.  相似文献   

15.
Levels of abscisic acid (ABA) and several indicators of leaf-water status were measured in excised and intact primary leaves of bean ( Phaseolus vulgaris cv. Kinghorn) exposed to different temperature and moisture regimes. After 2 h at 5°, 25° or 45°C under moist conditions, the water status of detached leaves showed only minor changes, and there was no increase in ABA. Under conditions favoring water loss, ABA rose over 10-fold at 25°C, and trends towards higher ABA levels were observed at 5° and 45°C. When intact leaves on whole plants were exposed to the same temperatures for 10 h, there was still no evidence of a temperature-dependent rise in ABA that was not associated with a disturbance in the water balance of the plant. These data suggest that the rapid accumulation of ABA during temperature stress is a function of induced moisture deficits and does not result from high or low temperatures per se.  相似文献   

16.
Abscisic acid (ABA) and lectin content was immunoassayed in wheat cell cultures affected by temperature stress. The elevated temperature (40°C) resulted in a 7-fold increase in the level of ABA and a 10-fold increase in that of lectin. The increase in the lectin content in cells was preceded by ABA accumulation. It is suggested that this ABA increase induces the synthesis of lectin, which in addition to stress proteins, play an important role in controlling mechanisms of plant adaptation to unfavourable environments.Abbreviations ABA abscisic acid - WGA wheat germ agglutinin  相似文献   

17.
Do brassinosteroids mediate the water stress response?   总被引:1,自引:0,他引:1  
Brassinosteroids (BRs) have been suggested to increase the resistance of plants to a variety of stresses, including water stress. This is based on application studies, where exogenously applied bioactive BRs have been shown to improve various aspects of plant growth under water stress conditions. However, it is not known whether changes in endogenous BR levels are normally involved in mediating the plant's response to stress. We have utilized BR mutants in pea ( Pisum sativum L.) to determine whether changes in endogenous BR levels are part of the plant's response to water stress and whether low endogenous BR levels alter the plant's ability to cope with water stress. In wild-type (WT) plants, we show that while water stress causes a significant increase in ABA levels, it does not result in altered BR levels in either apical, internode or leaf tissue. Furthermore, the plant's ability to increase ABA levels in response to water stress is not affected by BR deficiency, as there was no significant difference in ABA levels between WT, lkb (a BR-deficient mutant) and lka (a BR-perception mutant) plants before or 14 days after the cessation of watering. In addition, the effect of water stress on traits such as height, leaf size and water potential in lkb and lka was similar to that observed in WT plants. Therefore, it appears that, at least in pea, changes in endogenous BR levels are not normally part of the plant's response to water stress.  相似文献   

18.
Sieve tube sap exuded from the cut hypocotyl of castor bean seedlings (Ricinus communis L.) was found to contain 0.2–0.5 mmol m?3abscisic acid (ABA). The ABA concentration in the sieve tube sap always exceeded that in root pressure exudate under a wide range of water supply. Exudation of sieve tube sap from the cut hypocotyls caused water loss, and this induced ‘water shortage’ in the cotyledons which resulted in the ABA concentration in the cotyledons increasing by 3-fold and that in the sieve tube sap increasing by up to 50-fold within 7h. The wounded surface of the cut hypocotyl was not responsible for the ABA increase. Incubation of the cotyledons of endosperm-free seedlings in various ABA concentrations (up to 100 mmol m?3) increased the ABA concentration in sieve tube sap. The concomitant increase in ABA, both in cotyledons and in sieve tube sap, had no effect on the phloem loading of sucrose, K+ and Mg2+ within the experimental period, i.e. up to 10h. It can be concluded that (i) the phloem is an important transport path for ABA, (ii) water stress at the phloem loading sites elevates phloem-mobile ABA, which may then serve as a water stress signal for sinks, for example stem and roots (not only for stomata), and (iii) the ABA concentration of cells next to or in the phloem is more important than the average ABA content in the whole cotyledon for determining the ABA concentration in sieve tube sap.  相似文献   

19.
The effect of harvest time, shading prior to harvest and water stress on parthenolide (PRT) concentration in feverfew and its possible connection with the abscisic acid (ABA) pathway were investigated. In plants harvested at different times of the day, acetumar the PRT levels were highest during late afternoon while ABA levels were greatest during morning hours. Shading plants during the afternoon prior to harvest caused a two-fold increase in ABA and no significant difference in PRT levels. ABA was higher in water-stressed plants while PRTcontent increased in plants following recovery from a water stress event. ABA inhibitors, norflurazon, sodium tungstate, naproxen and sodium bisulfite, were used to determine the connection between the biosynthesis of PRTand ABA. Norflurazon and naproxen reduced PRT concentration in cut flowers and in 2-month old plants. Sodium bisulfite and sodium tungstate reduced PRT only in cut flowers. Application of 2,4-D, a promoter of ABA synthesis, to potted plants resulted in a 2.5 fold increase in PRT levels. The inhibition of PRT formation in response to ABA inhibitors and the increase in PRT concentration observed with 2,4-D application indicated that PRT is derived from carotenoid synthesis similarly to ABA and not directly from farnesyl pyrosphosphate (FPP) as suggested for other sesquiterpene Lactones. However, PRT and ABA levels are affected dissimilarly by environmental conditions. The overall results of the study indicated that simple agricultural practices, such as harvesting during afternoon and subjecting plants to a single water stress event, can increase PRT concentration in the final feverfew product with no additional costs of production prior to harvest.  相似文献   

20.
Levels of endogenous glycine betaine in the leaves were measured in response to cold acclimation, water stress and exogenous ABA application in Arabidopsis thaliana. The endogenous glycine betaine level in the leaves increased sharply during cold acclimation treatment as plants gained freezing tolerance. When glycine betaine (10 mM) was applied exogenously to the plants as a foliar spray, the freezing tolerance increased from -3.1 to -4.5 degrees C. In addition, when ABA (1 mM) was applied exogenously, the endogenous glycine betaine level and the freezing tolerance in the leaves increased. However, the increase in the leaf glycine betaine level induced by ABA was only about half of that by the cold acclimation treatment. Furthermore, when plants were subjected to water stress (leaf water potential of approximately -1.6 MPa), the endogenous leaf glycine betaine level increased by about 18-fold over that in the control plants. Water stress lead to significant increase in the freezing tolerance, which was slightly less than that induced by the cold acclimation treatment. The results suggest that glycine betaine is involved in the induction of freezing tolerance in response to cold acclimation, ABA, and water stress in Arabidopsis plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号