首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ribosomal assembly defective mutants of Escherichia coli   总被引:5,自引:1,他引:4       下载免费PDF全文
  相似文献   

2.
3.
Escherichia coli mutants defective in the uncH gene.   总被引:3,自引:14,他引:3       下载免费PDF全文
Plasmids carrying cloned segments of the unc operon of Escherichia coli have been used in genetic complementation analyses to identify three independent mutants defective in the uncH gene, which codes for the delta subunit of the ATP synthetase. Mutations in other unc genes have also been mapped by this technique. ATPase activity was present in extracts of the uncH mutants, but the enzyme was not as tightly bound to the membrane as it was in the parental strain. ATP-dependent membrane energization was absent in membranes isolated from the uncH mutants and could not be restored by adding normal F1 ATPase from the wild-type strain. F1 ATPase prepared from uncH mutants could not restore ATP-dependent membrane energization when added to wild-type membranes depleted of F1. Membranes of the uncH mutants were not rendered proton permeable as a result of washing with low-ionic-strength buffer.  相似文献   

4.
5.
6.
For the study of molybdenum uptake by Escherichia coli, we generated Tn5lac transposition mutants, which were screened for the pleiotropic loss of molybdoenzyme activities. Three mutants A1, A4, and M22 were finally selected for further analysis. Even in the presence of 100 microM molybdate in the growth medium, no active nitrate reductase, formate dehydrogenase, and trimethylamine-N-oxide reductase were detected in these mutants, indicating that the intracellular supply of molybdenum was not sufficient. This was also supported by the observation that introduction of plasmid pWK225 carrying the complete nif regulon of Klebsiella pneumoniae did not lead to a functional expression of nitrogenase. Finally, molybdenum determination by induced coupled plasma mass spectroscopy confirmed a significant reduction of cell-bound molybdenum in the mutants compared with that in wild-type E. coli, even at high molybdate concentrations in the medium. A genomic library established with the plasmid mini-F-derived cop(ts) vector pJE258 allowed the isolation of cosmid pBK229 complementing the molybdate uptake deficiency of the chlD mutant and the Tn5lac-induced mutants. Certain subfragments of pBK229 which do not contain the chlD gene are still able to complement the Tn5lac mutants. Mapping experiments showed that the Tn5lac insertions did not occur within the chromosomal region present in pBK229 but did occur very close to that region. We assume that the Tn5lac insertions have a polar effect, thus preventing the expression of transport genes, or that a positively acting regulatory element was inactivated.  相似文献   

7.
Mutants of Escherichia coli defective in catabolism of 3-phenylpropionate, 3-(3-hydroxyphenyl)propionate, or both were isolated after mutagenesis with ethylmethane sulfonate. Nine phenotypically distinct classes of mutants were identified, including strains lacking each of the first five enzyme activities for the degradation of these compounds and mutants pleiotropically negative for some of these activities. Characterization of these mutants was greatly facilitated by the use of indicator media in which accumulation of 3-(2,3-dihydroxyphenyl)propionate or 2-hydroxy-6-ketononadienedioic acid led to the formation of dark red or bright yellow colors, respectively, in the medium. Assays with wild-type and mutant strains indicated that 3-phenylpropionate (or its dihydrodiol), but none of the hydroxylated derivatives tested, induced the synthesis of enzymes for its conversion to 3-(2,3-dihydroxyphenyl)propionate. The remaining enzymes were induced by the 2- or 3-hydroxy or 2,3-dihydroxy derivatives of 3-phenylpropionate, with the 2-hydroxy compound acting as an apparent gratuitous inducer. Metabolism to nonaromatic intermediates appeared to be unnecessary for full induction of any pathway enzyme. One unusual class of mutants, in which 2-keto-4-pentenoate hydratase appeared to be uninducible, indicated a level of control not previously shown in meta-fission catabolic pathways.  相似文献   

8.
9.
Hybrid membrane particles from two mutants of Escherichia coli K12, Bv4 and K11, defective in oxidative phosphorylation, have been prepared, in which ATP-driven membrane energization is restored. A soluble factor of mutant K11 was found to have properties similar to parental crude coupling factor, ATPase (EC 3.6.1.3). Membrane particles of this mutant could not be reconstituted by parental coupling factor. Either parental coupling factor, or the soluble factor of mutant K11 could reconstitute both respiration-driven and ATP-driven energization to membrane particles of mutant Bv14 or to parental particles depleted of ATPase. Mutant Bv4 was found to be devoid of coupoing factor activity, while retaining the ability to hydrolyze ATP. Both mutants possess an ATPase with an altered binding to the membrane. Mutant K11 is impaired in respiration-driven amino acid transport, in contrast to mutant Bv4. The three major subunits of parental Escherichia coli ATPase have been isolated and antibodies have been prepared against these subunits. Antibodies against the largest subunit (alpha component) or against the intact catalytic subunits (alpha + beta components) inhibit both ATP-Pi exchange in the parent organism as well as ATP hydrolytic activity in parent and mutants. Antibodies against the two other subunits (beta or gamma components) also inhibit these two reactions, but were found to be less effective. Mutant N144, which lacks ATPase activity, shows no precipitin lines with anti-alpha, anti-beta, anti-gamma, or anti (alpha + beta) preparations. In contrast, mutants Bv4 and K11, exhibit cross-reactivity with all of the antisera.  相似文献   

10.
L Lee  T Mizuno    Y Imae 《Journal of bacteriology》1988,170(10):4769-4774
Tsr, a chemoreceptor for serine and repellents in Escherichia coli, also functions as a thermoreceptor. The relationship between the chemoreceptor and thermoreceptor functions of Tsr was examined in five tsr mutants with altered serine detection thresholds. The thermosensing abilities of the mutant Tsr proteins were not affected by the alterations in their affinities to serine. In contrast, the ability of serine to inactivate thermoreceptor function was altered in these mutants. The minimal serine concentration required for thermoreceptor inactivation was directly related to the decreased affinity of the mutant Tsr for serine. The amino acid replacements in the mutant receptors were deduced from DNA sequence analyses and occurred at two different locations in the presumed periplasmic domain of Tsr. Two mutations caused histidine or cysteine replacements at arginine 64, whereas three others caused isoleucine or proline replacements at threonine 156.  相似文献   

11.
12.
The effects of reduced efficiency of proton-motive force (pmf) generation on glucose metabolism were investigated in Escherichia coli respiratory-chain mutants. The respiratory chain of E. coli consists of two NADH dehydrogenases and three terminal oxidases, all with different abilities to generate a pmf. The genes for isozymes with the highest pmf-generating capacity (NADH dehydrogenase-1 and cytochrome bo? oxidase) were knocked out singly or in combination, using a wild-type strain as the parent. Analyses of glucose metabolism by jar-fermentation revealed that the glucose consumption rate per cell increased with decreasing efficiency of pmf generation, as determined from the growth parameters of the mutants. The highest rate of glucose metabolism was observed in the double mutant, and the lowest was observed in the wild-type strain. The respiration rates of the single-knockout mutants were comparable to that of the wild-type strain, and that of the double mutant was higher, apparently as a result of the upregulation of the remaining respiratory chain enzymes. All of the strains excreted 2-oxoglutaric acid as a product of glucose metabolism. Additionally, all of the mutants excreted pyruvic acid and/or acetic acid. Interestingly, the double mutant excreted L-glutamic acid. Alterations of the fermentation profiles provide clues regarding the metabolic regulation in each mutant.  相似文献   

13.
The export of lipoprotein has been found to be affected in both secA and secY mutants of Escherichia coli which are defective in the secretion of a number of outer membrane and periplasmic proteins. The kinetics of accumulation of prolipoprotein upon a temperature shift to 42 degrees C is indistinguishable from that of pre-OmpA protein accumulation in the secA mutant. In both secA and secY mutants, the accumulated prolipoprotein is unmodified with glyceride and localized in the cytoplasmic membrane. We conclude from these results that the early steps in protein export are common to prolipoprotein and non-lipoprotein precursors. The pathways for the export of these two groups of precursor proteins diverge with regard to the modification and processing reactions which are late events in the export process.  相似文献   

14.
15.
16.
Guanylate cyclase, which catalyzes the synthesis of guanosine 3',5'-monophosphate, has been assayed in several strains of Escherichia coli. They include wild-type cells and mutants defective in adenylate cyclase, which is responsible for the synthesis of adenosine 3',5'-phosphate. Our results demonstrate that adenylate cyclase and guanylate cyclase are two different enzymes in E. coli and suggest that the gene that encodes adenylate cyclase also plays a regulatory role in the synthesis of guanylate cyclase.  相似文献   

17.
18.
Escherichia coli K12 mutants defective in the glycine cleavage enzyme system   总被引:12,自引:0,他引:12  
Two routes of one-carbon biosynthesis have been described in Escherichia coli K12. One is from serine via the serine hydroxymethyltransferase (SHMT) reaction, and the other is from glycine via the glycine cleavage (GCV) enzyme system. To isolate mutants deficient in the GCV pathway, we used a selection procedure that is based on the assumption that loss of this enzyme system in strains blocked in serine biosynthesis results in their inability to use glycine as a serine source. Mutants were accordingly isolated that grow with a serine supplement, but not with a glycine supplement. Enzyme assays demonstrated that three independently isolated mutants have no detectable GCV enzyme activity. The absence of a functional GCV pathway results in the excretion of glycine, but has no affect on the cell's primary source of one-carbon units, the SHMT reaction. The new mutations, designated gcv, were mapped between the serA and lysA genes on the E. coli chromosome.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号