首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The germination and growth of pollen grains of Nicotiana tabacum and N. alata with the anti-microtubule drug oryzalin retarded significantly the movement of the vegetative nucleus (VN) and the generative cell (GC) from the grain to the tube apex but had no effect on pollen tube elongation. In N. tabacum, only 11% and 48% of the pollen tubes treated with oryzalin for 6 h and 12 h, respectively, had the VN and GC in the tube mainly in its middle part. In corresponding control materials, 79% and 99% of pollen tubes contained the VN and GC close to the apex. Indirect immunofluorescence microscopy and related studies of the tubes grown in the presence of oryzalin revealed complete absence of microtubules (MTs) but apparently intact microfilaments (MFs). These results suggested that the movement of VN and GC from the grain into the tube is possible when no MTs but only MFs are present, but the movement is then slow. In control tubes, the parallel orientation of MT bundles and extensions of VN were interpreted to represent the structural organization needed for the MT-dependent movement of VN.  相似文献   

2.
 We investigated polyamine linkage to different structural proteins in pollen of Malus domestica Borkh. cv Red Chief at different phases of germination. This linkage has the characteristics of covalent linkages, indeed, it could be catalyzed by transglutaminase (TGase; EC 2.3.2.13). This assumption is supported by: (1) formation of a labelled TCA pellet and selective labelling of endogenous proteins by covalent binding of radioactive polyamines and (2) cross-reactivity of two different polyclonal antibodies against mammalian TGases; western blot analysis allowed us to detect a protein of about 80 kDa in both rehydrated ungerminated and germinated pollen. TGase activity was high at 90 min after germination and was influenced by Ca2+ supply only in the rehydrated ungerminated pollen. Extraction by Triton X-100 suggests that pollen TGase was at least partially membrane-bound. The enzyme catalyzed the incorporation of polyamines mainly into proteins having a molecular mass of 43 kDa and 52–58 kDa in both ungerminated and germinated pollen. These bands matched immunolabelled spots identified by mouse monoclonal anti-actin and anti-α-tubulin antibodies. Supplying exogenous actin and tubulin in a cell-free extract of rehydrated ungerminated and germinated pollen enhanced the activity. Autoradiography of the SDS-PAGE of these samples clearly showed that both actin and tubulin were substrates of TGase. Thus, the pollen TGase may be involved in the rapid cytoskeletal rearrangement which takes place during rehydration of ungerminated pollen and organization and growth of pollen tubes. Received: 9 August 1996 / Revision accepted: 26 October 1996  相似文献   

3.
Elevation of the intracellular cAMP level induces morphological changes of astrocyte-like differentiation in C6 glioma cells. Such changes may be accompanied with expression of cytoskeletal protein genes. We therefore analyzed morphological changes after a treatment with dibutyryl cAMP (dbcAMP) and then assessed the expression of cytoskeletal protein genes by a quantitative real-time polymerase chain reaction. The cell number remained unaltered upon incubation with 1 mM dbcAMP in medium supplemented with 0.1% fetal bovine serum (FBS), whereas the number and lengths of processes increased, when compared with those of cells incubated in medium supplemented with 0.1% or 10% FBS only. The amounts of β-actin, γ-actin, and β-tubulin mRNAs in C6 cells, but not α-tubulin mRNA, increased during the early proliferation in DMEM containing 10% FBS. The expression of cytoskeletal protein genes decreased when incubated with 0.1% FBS or 1 mM dbcAMP in 0.1% FBS, compared with those of cells cultured in 10% FBS. These results indicated that, during the early proliferation in normal culture condition, the expression of cytoskeletal protein genes in C6 cells, except α-tubulin, increased, while in differentiating or differentiated C6 glioma cells, cAMP-induced morphological changes were not accompanied with elevation of gene expression for cytoskeletal proteins, such as actin and tubulin.  相似文献   

4.
Summary— The distribution of microtubules was investigated in Nicotiana tabacum pollen tubes at different stages of tube growth by immunofluorescence microscopy. Using specific antibodies, the presence of microtubules consisting of different tubulin isoforms was tested. α-, β- and tyrosinated α-tubulin were present within the tube, whereas the acetylated form was lacking. The presence of tubulin subunits in pollen tube extracts was also investigated by immunoblotting analyses. The use of a confocal laser scanning microscope integrated with computer-assisted imaging, allowed a detailed visualization of the microtubule distribution and organization. Cytoplasmic microtubules organized as short bundles with various orientations were detected at the apex of long tubes.  相似文献   

5.
The role of tubulin and actin in the development of Scots pine ( Pinus sylvestris ) roots and in the formation of the ectomycorrhiza with the basidiomycete Suillus bovinus was studied by immunoblotting of 2D-gels with anti-tubulin and anti-actin antibodies. In the short roots the α-tubulin pattern was different from that in the other root types due to the more acidic pI of the two α-tubulins. During the formation of the ectomycorrhiza, two new α-tubulins were detected in the acidic α-tubulin cluster. No such variation occurred in the plant β-tubulin patterns. The fungal tubulins dominated in the ectomycorrhiza, but no changes in tubulin polypeptide patterns from those in the S. bovinus mycelium were observed. Contrary to the tubulins, plant actin dominated in the mycorrhiza. The specific α-tubulin patterns of uninfected and infected short roots indicate that α-tubulin is involved in the morphogenesis of Pinus sylvestris short roots. The high level of plant actin at early stage of the mycorrhiza formation suggests a significant role of this protein in the interaction between plant cells and fungal hyphae.  相似文献   

6.
Identification of a gene for beta-tubulin in Aspergillus nidulans.   总被引:50,自引:0,他引:50  
G Sheir-Neiss  M H Lai  N R Morris 《Cell》1978,15(2):639-647
The tubulins of Aspergillus nidulans have been characterized in wild-type and ben A, B and C benomyl-resistant strains by two-dimensional gel electrophoresis, co-polymerization with porcine brain tubulin and peptide mapping. Four α-tubulins and at least four β-tubulins were resolved by two-dimensional gel electrophoresis of wild-type proteins. Eighteen of 26 benA mutants studied had electrophoretically abnormal β-tubulins. In these strains, one or more of the β-tubulins had either an altered isoelectric point or an altered electrophoretic mobility in the SDS gel dimension, or was diminished in amount. The a-tubulins were normal. Two-dimensional gels of protein extracts of a ben A/wild-type diploid strain demonstrated co-expression of the wild-type β-tubulins with the variant ben A tubulin. This experiment rules out post-translational modification as the source of the β-tubulin abnormalities in the benA mutants. We therefore conclude that benA must be a structural gene for β-tubulin. Due to the variety of abnormalities affecting β-tubulins in ben A mutants, and the absence of abnormalities affecting α-tubulins in any of the benomyl-resistant mutants, we also believe that the benomyl binding site must be located on the β-subunit of the tubulin dimer. The benA mutants of A. nidulans promise to be useful not only for characterizing the biochemical determinants of the benomyl binding site of tubulin but also for understanding the relationship between tubulin structure and function.  相似文献   

7.
The role of microtubules (MTs) in vegetative nucleus (VN) and generative cell (GC) transport was investigated by comparing VN and GC distribution with callose plug formation in tobacco pollen grains germinated and grown for 12 h with the plant-specific anti-MT drug oryzalin. The VN-GC complex or VN alone was located close to the tube tip in 100% of controls, but in only 5% of oryzalin-treated tubes. Instead, in 38% of oryzalin tubes, the complex or VN occurred close to the last-formed callose plug; in 40% between or in the middle of plugs; and in 17%, in or near the grain. An aberrant microfilament (MF) cytoskeleton was revealed by expression of a green fluorescent protein-talin fusion protein in living oryzalin-treated tubes. The abnormal MF structures probably resulted from the absence of MTs and impaired - or were a consequence of - VN and GC movement into the tube tip. In oryzalin tubes with several callose plugs, the VN and GC could be in or near the grain, indicating that callose plug synthesis is not dependent on the movement of VN and GC into the tube. VN and GC movement and callose plug formation are apparently independent events, in which the transport of the VN-GC complex must precede callose plug synthesis. Maintenance of the correct developmental program requires an intact MT cytoskeleton, otherwise no fertile pollen tubes are formed.  相似文献   

8.
The efficient folding of actin and tubulin in vitro and in Saccharomyces cerevisiae is known to require the molecular chaperones prefoldin and CCT, yet little is known about the functions of these chaperones in multicellular organisms. Whereas none of the six prefoldin genes are essential in yeast, where prefoldin-independent folding of actin and tubulin is sufficient for viability, we demonstrate that reducing prefoldin function by RNAi in Caenorhabditis elegans causes defects in cell division that result in embryonic lethality. Our analyses suggest that these defects result mainly from a decrease in α-tubulin levels and a subsequent reduction in the microtubule growth rate. Prefoldin subunit 1 (pfd-1) mutant animals with maternally contributed PFD-1 develop to the L4 larval stage with gonadogenesis defects that include aberrant distal tip cell migration. Importantly, RNAi knockdown of prefoldin, CCT or tubulin in developing animals phenocopy the pfd-1 cell migration phenotype. Furthermore, reducing CCT function causes more severe phenotypes (compared with prefoldin knockdown) in the embryo and developing gonad, consistent with a broader role for CCT in protein folding. Overall, our results suggest that efficient chaperone-mediated tubulin biogenesis is essential in C. elegans, owing to the critical role of the microtubule cytoskeleton in metazoan development.  相似文献   

9.
Distribution of post-translationally modified tubulins in cells of Nicotiana tabacum L. was analysed using a panel of specific antibodies. Polyglutamylated, tyrosinated, nontyrosinated, acetylated and Δ2-tubulin variants were detected on α-tubulin subunits; polyglutamylation was also found on β-tubulin subunits. Modified tubulins were detected by immunofluorescence microscopy in interphase microtubules, preprophase bands, mitotic spindles as well as in phragmoplasts. They were, however, located differently in the various microtubule structures. The antibodies against tyrosinated, acetylated and polyglutamylated tubulins gave uniform staining along all microtubules, while antibodies against nontyrosinated and Δ2-tubulin provided dot-like staining of interphase microtubules. Additionally, immunoreactivity of antibodies against acetylated and Δ2-tubulins was strong in the pole regions of mitotic spindles. High-resolution isoelectric focusing revealed 22 tubulin charge variants in N. tabacum suspension cells. Immunoblotting with antibodies TU-01 and TU-06 against conserved antigenic determinants of α- and β-tubulin molecules, respectively, revealed that 11 isoforms belonged to the α-subunit and 11 isoforms to the β-subunit. Whereas antibodies against polyglutamylated, tyrosinated and acetylated tubulins reacted with several α-tubulin isoforms, antibodies against nontyrosinated and Δ2-tubulin reacted with only one. The combined data demonstrate that plant tubulin is extensively post-translationally modified and that these modifications participate in the generation of plant tubulin polymorphism. Received: 2 May 1996 / Accepted: 16 September 1996  相似文献   

10.
This study was to investigate the effect of phenethyl isothiocyanate (PEITC), a constituent of many edible cruciferous vegetables, on the expression of α- and β-tubulins, which are the main components of microtubules in prostate cancer cells. Flow cytometry, light microscopy and western blot were used to study the cell cycle distribution, morphology changes and the expression of α- and β-tubulins in prostate cancer cells treated with PEITC. The results showed that PEITC-induced G2-M cell phase arrest and inhibited the expression of α- and β-tubulin proteins in a number of human prostatic carcinoma cell lines. Further, it is showed that this inhibitory effect could be reversed by antioxidant N-acetyl cysteine and proteasome inhibitor MG132. Finally, it is concluded that PEITC inhibited the expression of α- and β-tubulins in prostate cancer cells, which is at least related to the oxygen reaction species and protein degradation.  相似文献   

11.
The Characterization of Tubulin in CNS Membrane Fractions   总被引:13,自引:11,他引:2  
Abstract— Rough endoplasmic reticulum (RER), smooth endoplasmic reticulum (SER), and a plasma membrane (PM) fraction enriched in synaptic membranes were isolated from rat forebrain. The proteins in these membrane fractions were analyzed by two-dimensional gel electrophoresis (2DGE) in the isoelectric range of 5.1 to 6.0 by a modification of the O'Farrell procedure. Proteins were detected by Coomassie Brilliant Blue staining of the electrophoretograms. The results of these analyses were compared with 2DGE analysis of cytosol proteins, with particular attention given to tubulin subunits and actin. The RER contained one major protein (53K 5.4) in the β-tubulin region with a molecular weight of 53,000 and an isoelectric point of 5.4. The SER contained at least two major proteins in the β-tubulin region; one with a migration identical to 53K 5.4 and other proteins with slightly higher apparent molecular weights and more acidic isoelectric points (54K, 5.4 to 5.3), identical to cytoplasmic β-tubulin. The PM fraction also contained multiple overlapping proteins (54K, 5.4 to 5.3) in the β-tubulin area and a trace amount of the 53K 5.4 protein. The proteins in the β-tubulin region were removed from the 2DGE electrophoretogram and digested by Staphylococcus aureus V8 protease, and the peptides separated on one-dimensional polyacrylamide gels. The peptide patterns of 53K 5.4 protein from RER and SER were almost identical and differed significantly from the cytoplasmic β-tubulin pattern; however, the peptide maps of the PM and SER β-tubulin region were identical to the cytoplasmic β-tubulin. The 2DGE analysis of RER did not contain proteins in the region of cytoplasmic α-tubulin. SER and PM contained proteins in the α-tubulin region with a similar, but not identical, peptide analysis to cytoplasmic α-tubulin. Significant amounts of actin were detected in 2DGE analysis of SER and PM, and the peptide analysis of the actin was identical to the cytoplasmic actin analysis. The RER fraction contained only trace amounts of actin. The cytosol and all membrane fractions contained a protein (68K 5.6) found among microtubule-associated proteins, as judged by molecular weight and isoelectric point. Several proteins present in all membrane fractions (61K 5.1 and 58K 5.1) bound to concanavalin A agarose.  相似文献   

12.
Structures of homologous proteins are usually conserved during evolution, as are critical active site residues. This is the case for actin and tubulin, the two most important cytoskeleton proteins in eukaryotes. Actins and their related proteins (Arps) constitute a large superfamily whereas the tubulin family has fewer members. Unaligned sequences of these two protein families were analysed by searching for short groups of family-specific amino acid residues, that we call motifs, and by counting the number of residues from one motif to the next. For each sequence, the set of motif-to-motif residue counts forms a subfamily-specific pattern (landmark pattern) allowing actin and tubulin superfamily members to be identified and sorted into subfamilies. The differences between patterns of individual subfamilies are due to inserts and deletions (indels). Inserts appear to have arisen at an early stage in eukaryote evolution as suggested by the small but consistent kingdom-dependent differences found within many Arp subfamilies and in γ-tubulins. Inserts tend to be in surface loops where they can influence subfamily-specific function without disturbing the core structure of the protein. The relatively few indels found for tubulins have similar positions to established results, whereas we find many previously unreported indel positions and lengths for the metazoan Arps.  相似文献   

13.
为了系统分析八肋游仆虫(Euplotes octocarinatus)微管蛋白基因家族, 从八肋游仆虫大核基因组中共鉴定得到20个微管蛋白基因, 基于同源比对及系统进化分析, 将其归入α、β、γ、δ、ε及η六个微管蛋白亚家族; 多序列比对及Western blot结果显示八肋游仆虫η微管蛋白基因在翻译过程中需发生一次+1位编程性核糖体移码, 其移码位点为AAA-TAA; 所有自由生纤毛虫都含有多个α和β微管蛋白基因亚型, 可能用于组成不同的微管结构。研究为后续深入探讨八肋游仆虫微管蛋白的生物学功能及微管多样性奠定了基础。  相似文献   

14.
Poly(A)-containing mRNA was isolated from division synchronized populations of the ciliated protozoan, Tetrahymena pyriformis. The level of tubulin and actin mRNA at specific cell cycle stages was analyzed by hybridization to tubulin and actin cDNA probes and by gel analysis of their in vitro translation products. The pattern of fluctuation of tubulin mRNA levels was similar to that observed for the in vivo tubulin synthesis previously reported [1]. This suggests that as the cells progress through the cell cycle, tubulin synthesis is controlled at the mRNA level. There was little fluctuation of actin synthesis or actin mRNA levels during the cell cycle, which may be indicative of a different regulatory mechanism for actin than for tubulin.  相似文献   

15.
The messenger RNAs coding for α- and β-tubulin have been isolated from embryonic chick brain. Although the mRNAs for the two tubulin subunits have been resolved on native gels, they are very similar in molecular weight (650,000 daltons) as judged by mobility on denaturing gels containing methyl mercury. The mRNAs for β- and γ-actin have also been resolved on native gels, but migrate as an unresolved peak (molecular weight 650,000–700,000 daltons) under denaturing conditions. Since the nonmuscle actins are substantially smaller proteins than α- and β-tubulin, the large size of chick nonmuscle actin mRNAs suggests an unusually long untranslated region.Since tubulin and actin polypeptides are internal structural proteins, one would expect them to be synthesized only on free polysomes. Translation of mRNA derived directly from a purified membrane fraction or by puromycin release from that fraction, however, showed the synthesis of a small proportion of these proteins on polysomes that are membrane-associated. Peptide mapping has in all cases confirmed the identity of the products of cell-free synthesis with authentic α-tubulin, β-tubulin and actin. Approximately 67% of the α- and 13% of the β-tubulin chains produced by in vitro translation are competent for co-assembly into microtubules with added carrier microtubule protein.  相似文献   

16.
Cytoplasmic actin cables are the most prominent actin structures in plant cells, but the molecular mechanism underlying their formation is unknown. The function of these actin cables, which are proposed to modulate cytoplasmic streaming and intracellular movement of many organelles in plants, has not been studied by genetic means. Here, we show that Arabidopsis thaliana formin3 (AFH3) is an actin nucleation factor responsible for the formation of longitudinal actin cables in pollen tubes. The Arabidopsis AFH3 gene encodes a 785–amino acid polypeptide, which contains a formin homology 1 (FH1) and a FH2 domain. In vitro analysis revealed that the AFH3 FH1FH2 domains interact with the barbed end of actin filaments and have actin nucleation activity in the presence of G-actin or G actin-profilin. Overexpression of AFH3 in tobacco (Nicotiana tabacum) pollen tubes induced excessive actin cables, which extended into the tubes'' apices. Specific downregulation of AFH3 eliminated actin cables in Arabidopsis pollen tubes and reduced the level of actin polymers in pollen grains. This led to the disruption of the reverse fountain streaming pattern in pollen tubes, confirming a role for actin cables in the regulation of cytoplasmic streaming. Furthermore, these tubes became wide and short and swelled at their tips, suggesting that actin cables may regulate growth polarity in pollen tubes. Thus, AFH3 regulates the formation of actin cables, which are important for cytoplasmic streaming and polarized growth in pollen tubes.  相似文献   

17.
The chaperonin containing TCP-1 (CCT) is required for the production of native actin and tubulin and numerous other proteins, several of which are involved in cell cycle progression. The mechanistic details of how CCT acts upon its folding substrates are intriguing: whilst actin and tubulin bind in a sequence-specific manner, it is possible that some proteins could use CCT as a more general binding interface. Therefore, how CCT accommodates the folding requirements of its substrates, some of which are produced in a cell cycle-specific manner, is of great interest. The reliance of folding substrates upon CCT for the adoption of their native structures results in CCT activity having far-reaching implications for a vast array of cellular processes. For example, the dependency of the major cytoskeletal proteins actin and tubulin upon CCT results in CCT activity being linked to any cellular process that depends on the integrity of the microfilament and microtubule-based cytoskeletal systems.  相似文献   

18.
19.
Summary Cytoskeleton elements of aLabyrinthula isolate from the Falkland Islands were studied. The most important characteristic of the genusLabyrinthula is a colourless branched plasmatic network of pseudopodia-like tubes with sliding spindle-shaped uninuclear plasma portions (cell bodies). After fluorescent staining tubulin appears to be uniformly and diffusely distributed throughout the whole network and to form a reticulate structure in the cell bodies. The inhibitor colchicine has no influence on the sliding motility of the cell bodies nor on the movement of the network. Actin is frequently found in the network, partly in the form of microfilament bundles, which are longitudinally arranged. Actin is also present in the cortical region of cell bodies, or of cell body groups. It was difficult to distinguish single cell bodies within groups by fluorescence. The inhibitors cytochalasin B and D stop the movement of cell bodies and network. Myosin is present in the cortical region of each cell body, and the central portions of each individual cell body contain accumulations of this protein. We could not observe any fluorescence in the network after myosin staining with the antibodies we used. An actin-myosin complex is probably responsible for the sliding movement of cell bodies in the Labyrinthula network, because actin is found in the pseudopodia-like tubes, and the cortex of the cell bodies is rich in actin and myosin. This actin-myosin complex seems to differ from another actin-myosin complex that has been postulated to be responsible for the locomotion of pseudopodia-like tubes. We propose that two actin-myosin complexes exist. One of them is responsible for locomotory phenomena of the network, and the second for cell body sliding in the pseudopodia-like tubes. In each case the myosin is probably anchored in the inner matrix membrane of the pseudopodia-like tubes. A model for actin-myosin interaction inLabyrinthula spp. is presented.  相似文献   

20.
Genomic clones containing α-tubulin sequences were isolated from a library of Drosophila melanogaster DNA and identified by a hybridization-selection and in vitro-translation procedure. The in vitro translation products were identical to the two electrophoretic variants of α-tubulin present in Drosophila embryos. They co-assembled with an embryonic tubulin fraction to form microtubules in vitro and generated the same partial proteolytic fragments as Drosophila α-tubulins. Hybridization in situ to polytene chromosomes revealed that the α-tubulin sequences constitute a multigene family localized on the right arm of chromosome 3 at sites 84 B3–6, 84 D4–8 and 85 E6–10. Clones hybridizing to these sites corresponded to the three major α-tubulin sequences in genomic DNA. The α-tubulin sequences at 84 B3–6 were present twice per haploid genome, embedded in a large duplicated DNA segment. The sequences of the three genomic α-tubulin genes showed considerable divergence, making it possible to conclude that both of the α-tubulin variants present in embryos are encoded by the genes at 84 B3–6. Furthermore, the abundance of this α-tubulin messenger RNA changes with the requirements for microtubule synthesis during embryo development. The genes at 84 B3–6 encoded both the stored maternal mRNA of the oocyte and the major mRNA transcribed during embryonic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号