首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enoyl-ACP reductase is a catalytic component of the fatty acid synthetase (FAS) type II system in plants that is involved in the de novo fatty acid biosynthesis in plastids. A cDNA encoding an enoyl-ACP reductase responsible for the removal of the trans-unsaturated double bonds to form saturated acyl-ACP has been isolated from a library made from ripening fruits of Olea europaea L. The predicted protein contains 393 amino acid residues including a consensus chloroplast specific transit peptide. A strong homology was observed when olive enoyl-ACP reductase aligned with other plant sequences. Southern hybridization analysis revealed that enoyl-ACP reductase is encoded by a single gene in olives. Northern hybridization showed a transient expression of the enoyl-ACP reductase (ENR) gene at early stages of drupe (5-7 weeks after flowering, WAF), embryo and endosperm (13-16 WAF) while in mesocarp (13-19 WAF) the expression remained at high levels. In situ hybridization showed particularly prominent expression in the palisade and vascular tissue of young leaves, the tapetum, developing pollen grains and vascular tissue of anthers and to less extent in the embryo sac and transmitting tissue of the carpel. The distinctive spatial and temporal regulation of the ENR gene is consistent with major roles, not only in thylakoid membrane formation and fatty acid deposition, but also in the provision of precursor molecules for the biosynthesis of oxilipins that are important in plant tissues involved in transportation and reproduction.  相似文献   

2.
3.
4.
We report the characterisation of two cytochrome b5 genes and their spatial and temporal patterns of expression during development in olive, Olea europaea. A PCR-generated probe, based on a tobacco cytochrome b5 sequence, was used to isolate two full-length cDNA clones (cytochrome b5-15 and cytochrome b5-38) from a library derived from 13 WAF olive fruits. The cDNAs encoded proteins of 17.0 and 17.7 kDa, which contained all the characteristic motifs of cytochromes b5 from other organisms and exhibited 63% identity and 85% similarity with each other. The olive cytochrome b5-15 cDNA was then used as a probe for more detailed analysis. Southern blotting revealed a gene family of at least 4–6 members while northern blotting and in situ hybridisation showed a highly specific pattern of gene expression. Very low levels of cytochrome b5 mRNA were detected in tissues characterised by high rates of lipid accumulation, such as young expanding leaves, maturing seeds and ripening mesocarp. The cytochrome b5 genes were not induced at 6 °C and their response to ABA was relatively slow compared with fatty acid desaturase genes. In contrast, high levels of cytochrome b5 gene expression were found in young fruits at the pattern formation (globular/heart) stage of embryogenesis and in vascular and transmitting tissues of male and female reproductive organs. The data are consistent with a major role for cytochrome b5 in developmental processes related to plant reproduction in addition to being an electron donor to microsomal desaturases.  相似文献   

5.
Flavonol synthase gene expression during citrus fruit development   总被引:4,自引:0,他引:4  
  相似文献   

6.
应用逆转录-聚合酶链式反应(RT—PCR),从黄瓜子房(幼果)中扩增出生长素结合蛋白ABP1)cDNA片段。该基因在开花前1天的子房中表达信号较弱,在授粉后2、4和6天的幼果中表达较强;在开花后2天有单性结实能力的子房中表达信号较强,不能形成果实的子房中信号较弱,所以ABP1基因可能参与黄瓜果实的生长发育过程。将拟南芥ABP1基因转入黄瓜中,转基因黄瓜的单性结实率平均为31.7%,高于对照(19.9%)。由于黄瓜的单性结实主要与生长素有关,所以,转基因植株单性结实率的提高可能是由于子房增强了对自身所含生长素的敏感性所致,说明生长素结合蛋白参与生长素在黄瓜果实生长发育中的生理作用。  相似文献   

7.
8.
9.
Positional isomers of mono-unsaturated 18:1-ACP have been used as substrates for stearoyl-acyl carrier protein delta9 desaturase to test whether a C-H bond abstraction from either the C-9 or C-10 position could lead to rearranged products diagnostic for the production of an allylic radical intermediate. The reconstituted enzyme complex was able to desaturate trans-delta11-18:1-ACP and trans-delta7-18:1-ACP, but not trans-delta9-18:1-ACP, or any of the corresponding cis-isomers. Enzymatic desaturation of trans-delta11-18:1-ACP gave a single product, cis-delta9,trans-delta11-18:2-ACP, as characterized by gas chromatography-electron ionization mass spectrometry of the molecular ions, the fragmentation products of pyrrolidide and 4,4-dimethyloxazoline derivatives, and by comparison of chromatographic retention times with authentic standards. Reaction of trans-delta7-18:1-ACP gave two enzymic products, trans-delta7,cis-delta9-18:2 (approximately 80%) and trans-delta7,cis-delta11-18:2 (approximately 20%). The major product was likely formed in a reaction identical to that of 18:0-ACP desaturation, while the minor product was likely formed by alternative placement of the C-10 and C-11 positions of the substrate analog in a cis configuration relative to the diiron oxidant. Since none of the products observed are indicative of rearrangements originating with an allylic radical, a discussion of the origins and possible implications of these results is presented.  相似文献   

10.
White RD  Fox BG 《Biochemistry》2003,42(25):7828-7835
The fatty acid analogues 9- and 10-thiastearate were converted to acyl-ACP derivatives by in vitro enzymatic synthesis and reacted with the reconstituted soluble stearoyl-ACP Delta9 desaturase complex. Electrospray ionization mass spectral analysis of the acyl chains purified from the reaction mixtures showed that 10-thiastearoyl-ACP was converted to the 10-sulfoxide as the sole product. In the presence of (18)O(2), the sulfoxide oxygen was found to be derived exclusively from O(2). This result confirms the ability of the soluble stearoyl-ACP desaturase to catalyze O atom transfer in the presence of the appropriate substrate analogue. Inhibition studies showed that 10-thiastearoyl-ACP was a mixed-type inhibitor of 18:0-ACP, with an apparent K(I) of approximately 10 microM. Comparable reactions of the stearoyl-ACP desaturase complex with 9-thiastearoyl-ACP gave the 9-sulfoxide as approximately 5% of the total products, with the O atom again exclusively derived from O(2). The remaining 95% of the total products arose from an acyl chain cleavage reaction between S-9 and C-10. Matrix-assisted laser desorption ionization time-of-flight mass spectral analysis showed that 9-thiastearoyl-ACP had a mass of 9443 amu while the acyl chain cleavage product had a mass of 9322 amu, corresponding to the calculated mass of 8-mercaptooctanoyl-ACP. Recovery of the acyl chain from the ACP product gave the disulfide of 8-mercaptooctanoate (mass of 349.1 amu), arising from the dimerization of 8-mercaptooctanoate during product workup. Gas chromatography-mass spectral analysis also showed the accumulation of nonanal in sealed reaction vials, accounting for the other product of the acyl chain cleavage reaction. The reactivity at both the 9 and 10 positions of the thia-substituted acyl-ACPs is consistent with the proximity of both positions to the diiron center oxidant in the enzyme-substrate complex. Moreover, the differential reactivity of the 9- and 10-thiastearoyl-ACPs also suggests position-dependent consequences of the reaction within the Delta9D active site. Mechanisms accounting for both sulfoxidation and acyl cleavage reactions by the stearoyl-ACP Delta9 desaturase are proposed.  相似文献   

11.
Tomato (Solanum lycopersicum L.) plants were transformed with an antisense construct of a cDNA encoding tomato telomere-binding protein (LeTBP1) to describe the role of a telomere-binding protein at the whole plant level. Fruit size decreased corresponding to the degree of suppression of LeTBP1 expression. This inhibition of fruit development was likely due to a decrease in the number of seeds in the LeTBP1 antisense plants. Pollen fertility and pollen germination rate decreased in accordance with the degree of suppression of LeTBP1 expression. Ovule viability was also reduced in the LeTBP1 antisense plants. Although plant height was somewhat reduced in the antisense plants compared to the control plants, the number and weight of leaves were unaffected by LeTBP1 suppression. The number and morphology of flowers were also normal in the antisense plants. These indicate that reduced fertility in the antisense plants is not an indirect effect of altered vegetative growth. LeTBP1 expression was sensitive to temperature stress in wild-type plants. We conclude that LeTBP1 plays a critical role in seed and fruit development rather than vegetative growth and flower formation.  相似文献   

12.
硬脂酰-ACPΔ~9脱氢酶(Stearoyl-acyl carrier proteinΔ~9 desaturase,SAD)在质体中催化单不饱和油酸或棕榈油酸的合成,是控制植物细胞饱和脂肪酸与不饱和脂肪酸比例的关键酶。为解析大豆油酸合成积累调控机制,文中对大豆Glycine max GmSAD家族成员进行全基因组鉴定和保守功能域及理化性质等分析。应用qRT-PCR检测GmSAD各成员的时空表达谱,构建表达载体并通过农杆菌介导烟草Nicotiana tabacum瞬时表达和油酸缺陷型酵母Saccharomyces cerevisiae突变株BY4389遗传转化测试GmSAD酶活性和生物学功能。结果表明,大豆基因组含有5个GmSADs家族成员,其编码酶蛋白均具有二铁中心和SAD酶特有的2个保守组氨酸富集基序(EENRHG和DEKRHE),预测其活性酶蛋白为同源二聚体。系统进化分析显示5个GmSAD分成2个亚组,分别与拟南芥AtSSI2和AtSAD6亲缘关系较近。GmSAD各成员在大豆根、茎、叶、花和不同发育时期种子等组织中表达谱差异明显,其中GmSAD5在发育种子中、晚期高量表达,与油脂富集时期相吻合。烟草叶片瞬时表达GmSAD5可使叶片组织中油酸和总油脂含量分别提高5.56%和2.73%,而硬脂酸含量相应降低2.46%。缺陷型酵母遗传转化测试显示,过表达GmSAD5能恢复缺陷酵母合成单不饱和油酸的能力和促进油脂积累。总之,大豆GmSAD5对硬脂酸底物选择性较强,能高效催化单不饱和油酸的生物合成,为大豆种子油酸和总油脂积累机制的研究奠定了基础,也可作为油脂品质遗传改良的优异靶标。  相似文献   

13.
14.
Rogge CE  Fox BG 《Biochemistry》2002,41(31):10141-10148
Stearoyl acyl carrier protein Delta(9) desaturase catalyzes the NADPH- and O(2)-dependent insertion of a cis double bond between the C-9 and C-10 positions of the acyl chain in the kinetically preferred natural substrate 18:0-ACP. In this work, substrate analogues with an oxygen atom singly replacing the methylene groups at the 8, 9, 10, and 11 positions of the stearoyl chain were synthesized, converted to acyloxy-ACPs, and used as probes of desaturase reactivity. Evidence for desaturation, acyloxy chain scission, and register-shift in binding prior to chain scission was obtained. Reactions with acyloxy-ACPs having either O-8 or O-11 substitutions gave a single desaturation product consistent with the insertion of a cis double bond between C-9 and C-10. The k(cat)/K(M) values for the O-8- and O-11-substituted acyloxy-ACPs were comparable to that of the natural substrate, indicating that the presence of an ether group adjacent to the site of reactivity did not significantly interfere either with the desaturation reaction or with the binding of substrate in the proper register for desaturation between C-9 and C-10. For reactions with the O-9 and O-10 acyloxy-ACPs, the k(cat) values were decreased to approximately 3% of that observed for 18:0-ACP, and upon reaction, the acyloxy chain was broken to yield an omega-hydroxy fatty alkanoyl-ACP and a volatile long-chain aldehyde. For the O-9 substitution, 8-hydroxyoctanoate and 1-nonanal were obtained, corresponding to the anticipated binding register and subsequent reaction between the O-9 and C-10 positions. In contrast, the O-10 substitution yielded 9-hydroxynonanoyl-ACP and 1-octanal, corresponding to an obligate "register-shift" of acyloxy chain binding prior to reaction between the O-10 and C-11 positions. Register-shift is thus defined as a mechanistically relevant misalignment of acyl chain binding that results in reaction at positions other than between C-9 and C-10. The inability of the O-10 acyloxy probe to undergo reaction between the C-9 and O-10 positions provides evidence that the Delta9D-catalyzed desaturation of stearoyl-ACP may initiate at C-10. Possible mechanisms of the acyl chain scission and implications of these results for the desaturation mechanism are considered.  相似文献   

15.
The nematode Caenorhabditis elegans is contained within a multifunctional exoskeleton, the cuticle, that contains a large number of distinct collagens. As the nematode proceeds from the egg through four larval stages to the adult, transition between larval stages is marked by synthesis of a new cuticle and subsequent moulting of the old one. This is a cyclically repeated developmental event, frequently described as the moulting cycle. We have examined the temporal expression of a group of six genes encoding distinct cuticular collagens. As expected, mRNA abundance for each of the six genes tested is found to oscillate, peaking once during each larval stage. Unexpectedly, the periods of abundance for each gene do not coincide, different genes being expressed at different times relative to one another within the moulting cycle. We detect a programme of temporally distinct waves of collagen gene expression, the precise pattern of which is repeated during each of the four larval stages. This multiphasic pattern of oscillating cuticular collagen gene expression indicates an unexpected complexity of temporal control during the nematode moulting cycle and has implications for collagen trimerization and cuticle synthesis.  相似文献   

16.
Acyl-acyl carrier protein (ACP) desaturases function to position a single double bond into an acyl-ACP substrate and are best represented by the ubiquitous Delta9 18:0-ACP desaturase. Several variant acyl-ACP desaturases have also been identified from species that produce unusual monoenoic fatty acids. All known acyl-ACP desaturase enzymes use ferredoxin as the electron-donating cofactor, and in almost all previous studies the photosynthetic form of ferredoxin rather than the non-photosynthetic form has been used to assess activity. We have examined the influence of different forms of ferredoxin on acyl-ACP desaturases. Using combinations of in vitro acyl-ACP desaturase assays and [(14)C]malonyl-coenzyme A labeling studies, we have determined that heterotrophic ferredoxin isoforms support up to 20-fold higher unusual acyl-ACP desaturase activity in coriander (Coriandrum sativum), Thunbergia alata, and garden geranium (Pelargonium x hortorum) when compared with photosynthetic ferredoxin isoforms. Heterotrophic ferredoxin also increases activity of the ubiquitous Delta9 18:0-ACP desaturase 1.5- to 3.0-fold in both seed and leaf extracts. These results suggest that ferredoxin isoforms may specifically interact with acyl-ACP desaturases to achieve optimal enzyme activity and that heterotrophic isoforms of ferredoxin may be the in vivo electron donor for this reaction.  相似文献   

17.
Transient protein expression using polyethyleneimine as a transfection agent is useful for the rapid production of small amounts of recombinant proteins. It is known that an increase in extracellular DNA concentration during transfection can lead to a nonlinear increase in intracellular DNA concentration. We present an approach that hypothesizes that this nonlinearity can be used to decrease the amount of plasmid required for productive transfections. Through addition of non coding ‘carrier’ DNA to increase total DNA concentration during transfection, we report a statistically significant increase in protein (IgG) expression per unit plasmid used for transfection. This approach could be useful to increase protein yields for large scale transfections under conditions where plasmid availability is limited.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号