首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The integrative reflex control of the neurohumoral drive to the circulation by unmyelinated vagal afferents and arterial baroreceptor afferents is often complex and depends on a number of factors. These include 1) the initial condition or the existing inhibitory influence exerted by one receptor station, 2) alteration in gain or central response of one reflex as a result of afferent information from the other system, and 3) altered receptor sensitivity as a result of reflex changes in sympathetic outflow. With respect to the cardiopulmonary and arterial baroreflex control of renin release, the accompanying reflex hemodynamic changes may influence the magnitude of the renin response. Finally, recent data suggest that reflex increases in vasopressin by either reflex system may result in an inhibitory influence on sympathetic outflow. Thus, in this latter case, a central interaction results between two reflex responses.  相似文献   

2.
Contribution of sympathetic neural reflexes to mineralocorticoid escape   总被引:1,自引:0,他引:1  
The administration of aldosterone to normal subjects induces sodium retention, which is only transient inasmuch as sodium balance is restored shortly after extracellular fluid volume is expanded. This escape from sodium-retaining effects of mineralocorticoids, which is normally attended by sympathetic withdrawal, is not seen in some forms of secondary hyperaldosteronism that evolve with edema and increased sympathetic activity. The precise significance of the reflexly mediated changes in sympathetic activity on renal function has been difficult to assess. In fact, changes in cardiovascular volumes are known to be accompanied by alterations in other parameters that play a crucial role on salt and water equilibrium, such as renal perfusion pressure and renal renin. In this short paper we have analyzed the most probable integrated sequence of responses in neural activity, systemic pressure, and renal renin that lead to escape from high circulating levels of aldosterone. A major role is ascribed to volume expansion and to arterial pressure-induced natriuresis in the restoration of sodium balance. However, such responses are greatly facilitated by a selective inhibition of renal sympathetic activity mediated by cardiopulmonary receptors, and by a fall in postglomerular vascular resistance specifically mediated by a decrease in intrarenal angiotensin. These two modulatory factors are thought to assume a greater influence on sodium excretion during instances of secondary hyperaldosteronism.  相似文献   

3.
To investigate the involvement of vagal afferents in renal nerve release of catecholamines, we compared norepinephrine, dopamine, and epinephrine excretion from innervated and chronically denervated kidneys in the same rat. The difference between innervated and denervated kidney excretion rates was taken as a measure of neurotransmitter release from renal nerves. During saline expansion, norepinephrine excretion from the innervated kidney was not statistically greater than from denervated kidneys. Vagotomy increased norepinephrine release from renal nerves. Thus vagal afferents participated in the suppression of renal sympathetic nerve activity during saline expansion. No significant vagal control of dopamine release by renal nerves was detected under these conditions. Bilateral carotid ligation stimulated renal nerve release of both norepinephrine and dopamine in saline-expanded rats. The effects of carotid ligation and vagotomy were not additive with respect to norepinephrine release by renal nerves. However, the baroreflex-stimulated renal nerve release of dopamine was abolished by vagotomy. Electrical stimulation of the left cervical vagus with a square wave electrical pulse (0.5 ms duration, 10 V, 2 Hz) increased dopamine excretion exclusively from the innervated kidney of hydropenic rats. No significant change in norepinephrine excretion was observed during vagal stimulation. Increased dopamine excretion during vagal stimulation was associated with a larger natriuretic response from the innervated kidney than from its denervated mate (p less than 0.05). We conclude that under appropriate conditions vagal afferents stimulate renal release of dopamine and produce a neurogenically mediated natriuresis.  相似文献   

4.
Atrial natriuretic peptide (ANP) can excite cardiac nerve endings and invoke a decrease in arterial blood pressure and a reduction in renal sympathetic nerve activity. Our laboratory has previously demonstrated that this renal depressor reflex was invoked by systemic injection of ANP and not by the direct application of ANP to the epicardium, a major locus for vagal afferents. We now examine whether inhibition of prostaglandin synthesis impairs reflex responses that are normally associated with ANP injections. Renal sympathetic nerve activity, arterial blood pressure, and heart rate were recorded in anesthetized rats. Indomethacin was used to inhibit prostaglandin synthesis through the cyclooxygenase pathway. The ANP-mediated decrease in arterial blood pressure and renal sympathetic nerve activity, observed when prostaglandin synthesis was inhibited, did not differ significantly from the decreases observed in these parameters when prostaglandin synthesis was not inhibited. Heart rate remained unchanged. Our results suggest that the sympatho-inhibitory effects of ANP do not require prostaglandins as intermediary compounds.  相似文献   

5.
In frogs anesthetized with viadril, intravenous injection of 2,5% dextran gives rise to inhibition of the sympathetic discharges in the renal nerve. Reduction in the blood volume causes an increase of the discharges in the renal nerve. The changes in the sympathetic activity are in a good agreement with those in the pulse pressure amplitude. Meanwhile no appreciable correlation is found between the changes in the sympathetic activity and the mean blood pressure. It is suggested that the intensity of the sympathetic activity in the frog renal nerve is mainly determined by the filling of the heart. After bilateral vagotomy the changes in the blood volume do not affect the electric activity of the renal nerve. The authors believe that the mechanoreceptor zones of the cardiovascular system responsible for its control are likely to be innervated only by the vagus.  相似文献   

6.
The rich innervation of the kidney is distributed to all structures of renal parenchyma thus providing important anatomical support to the functional evidence that the renal nerves can control kidney functions and send signals on the kidney environment to the central nervous system. Efferent renal nerve fibres are known to influence renal haemodynamics by modifying arteriolar vascular tone, renin release by a direct action on juxtaglomerular cells, and the excretion of sodium and water by changing tubular reabsorption of sodium and water at the different tubular levels. Mechano- and chemo-receptors have been shown in the kidney. Afferent fibres connected with renal receptors convey signals to the central nervous system both at spinal and supraspinal levels. The central areas receiving inputs from the kidney are those involved in the control of cardiovascular homeostasis and fluid balance. Activation of renal receptors by the electrical stimulation of renal afferent fibres were found to elicit both excitatory and inhibitory sympathetic responses. Although the existence of excitatory renorenal reflexes has been suggested, electrophysiological and functional data demonstrate that neural renorenal reflexes exert a tonic inhibitory influence on the tubular sodium and water reabsorption and on the secretion of renin from the juxtaglomerular cells.  相似文献   

7.
The present study was designed to evaluate, in Wistar rats, the effect of high- or low-salt diet on the hemodynamic parameters and on the renal and lumbar sympathetic nerve activity. The renal gene expression of the renin angiotensin system components was also evaluated, aiming to find some correlation between salt intake, sodium homeostasis and blood pressure increase. Male Wistar rats received low (0.06% Na, TD 92141-Harlan Teklad), a normal (0.5% Na, TD 92140), or a high-salt diet (3.12% Na, TD 92142) from weaning to adulthood. Hemodynamic parameters such as cardiac output and total peripheral resistance, and the renal and lumbar sympathetic nerve activity were determined (n=45). Plasma renin activity, plasma and renal content of angiotensin (ANG) I and II, and the renal mRNA expression of angiotensinogen, renin, AT1 and AT2 receptors were also measured (n=24). Compared to normal- and low-salt diet-, high-salt-treated rats were hypertensive and developed an increase (P<0.05) in total peripheral resistance and lumbar sympathetic nerve activity. A decrease in renal renin and angiotensinogen-mRNAs and in plasma ANG II and plasma renin activity was also found in salt overloaded animals. The renal sympathetic nerve activity was higher (P<0.05) in low- compared to high-salt-treated rats, and was associated with an increase (P<0.05) in renal ANG I and II and with a decrease (P<0.05) in AT2 renal mRNA. Plasma ANG I and II and plasma renin activity were higher in low- than in normal-salt rats. Our results show that increased blood pressure is associated with increases in lumbar sympathetic nerve activity and total peripheral resistance in high-salt-treated rats. However, in low-salt-treated rats an increase in the renal sympathetic nerve was correlated with an increase in the renal content of ANG I and II and with a decrease in AT2 renal mRNA. These changes are probably in favor of the antinatriuretic response and the sodium homeostasis in the low-salt group.  相似文献   

8.
This study was designed to investigate the interaction between carotid sinus baroreceptors and cardiopulmonary receptors in the reflex control of renal nerve activity (RNA) during positive end-expiratory pressure (PEEP) in anesthetized dogs. PEEP at two different levels (10 and 20 cmH2O) was applied to the following groups: animals with neuraxis intact (I group, n = 12); vagal and aortic nerve denervated animals with carotid sinus nerves intact (V group, n = 6); carotid sinus denervated animals with vagal and aortic nerves intact (SD group, n = 6); and carotid sinus denervated animals also having severed vagal and aortic nerves (SAV group, n = 12). Mean blood pressure (MBP), central venous pressure, and mean airway pressure were also simultaneously measured. In the I group, no significant alterations in RNA occurred during PEEP at both levels, even when MBP fell significantly. Although the drop in MBP in the SD group was similar to that in the I group, RNA decreased significantly 10 s after intervention at both PEEP levels, followed by a recovery of RNA toward the control level. In contrast, a significant increase in RNA, which continued until the end of PEEP, appeared in the V group immediately after each intervention. In the SAV group, RNA responses to PEEP, which were observed in the other groups, were abolished. These results provide evidence that during PEEP, renal nerve activity is modified by an interaction between carotid sinus baroreceptors and cardiopulmonary receptors; excitatory effects occur via carotid sinus nerves and inhibitory effects occur via vagal afferents.  相似文献   

9.
The entire mammalian nephron, including the juxtaglomerular apparatus, receives an exclusive noradrenergic innervation. Renal tubular alpha 1 adrenoceptors mediate the alterations in tubular segmental sodium, chloride, and water reabsorption that occur in response to direct or reflex changes in efferent renal sympathetic nerve activity. Specific tubular segments so identified are the proximal convoluted tubule, the loop of Henle (thick ascending limb), and the collecting duct. Alterations in efferent renal sympathetic nerve activity represent an important physiological contribution to the overall role of the kidney in the regulation of external sodium balance in conscious animals during both dietary sodium restriction and acute and chronic increases in total-body sodium. Progressively more intense activation of the renal nerves recruits a series of adrenergically mediated influences on renin secretion that are additive, ranging from subtle (modulation of nonneural mechanisms without directly causing renin secretion) to marked (renal vasoconstriction, antinatriuresis, high renin secretion rates). Juxtaglomerular granular cell beta 1 adrenoceptors mediate renin secretion responses to frequencies of renal nerve stimulation that do not cause renal vasoconstriction; at higher frequencies of renal nerve stimulation where renal vasoconstriction is present, renal vascular alpha 1 adrenoceptors mediate a portion of the renin secretion response.  相似文献   

10.
Recent studies indicate that renal sympathetic nerve activity is chronically suppressed during ANG II hypertension. To determine whether cardiopulmonary reflexes and/or arterial baroreflexes mediate this chronic renal sympathoinhibition, experiments were conducted in conscious dogs subjected to unilateral renal denervation and surgical division of the urinary bladder into hemibladders to allow separate 24-h urine collection from denervated (Den) and innervated (Inn) kidneys. Dogs were studied 1) intact, 2) after thoracic vagal stripping to eliminate afferents from cardiopulmonary and aortic receptors [cardiopulmonary denervation (CPD)], and 3) after subsequent denervation of the carotid sinuses to achieve CPD plus complete sinoaortic denervation (CPD + SAD). After control measurements, ANG II was infused for 5 days at a rate of 5 ng. kg(-1). min(-1). In the intact state, 24-h control values for mean arterial pressure (MAP) and the ratio for urinary sodium excretion from Den and Inn kidneys (Den/Inn) were 98 +/- 4 mmHg and 1.04 +/- 0.04, respectively. ANG II caused sodium retention and a sustained increase in MAP of 30-35 mmHg. Throughout ANG II infusion, there was a greater rate of sodium excretion from Inn vs. Den kidneys (day 5 Den/Inn sodium = 0.51 +/- 0.05), indicating chronic suppression of renal sympathetic nerve activity. CPD and CPD + SAD had little or no influence on baseline values for either MAP or the Den/Inn sodium, nor did they alter the severity of ANG II hypertension. However, CPD totally abolished the fall in the Den/Inn sodium in response to ANG II. Furthermore, after CPD + SAD, there was a lower, rather than a higher, rate of sodium excretion from Inn vs. Den kidneys during ANG II infusion (day 5 Den/Inn sodium = 2.02 +/- 0.14). These data suggest that cardiac and/or arterial baroreflexes chronically inhibit renal sympathetic nerve activity during ANG II hypertension and that in the absence of these reflexes, ANG II has sustained renal sympathoexcitatory effects.  相似文献   

11.
Effect of noradrenaline on renal function and renin secretion was studied during infusion into the renal artery of anaesthetized dogs. Experiments were performed with or without alpha or beta receptor blockade. Noradrenaline infusion resulted in a significant elevation of renin secretion associated with marked vasoconstriction. Urine flow rate, the filtered and excreted amounts of sodium were diminished due to the decreased GFR. Alpha receptor blockade suppressed renin secretion in the presence of changes in renal haemodynamics. The simultaneous infusion of noradrenaline enhanced renin release without affecting renal haemodynamics or reducing Na-excretion. Following simultaneous inhibition of alpha and beta receptors renin secretion dropped markedly; there were no further changes in either renin secretion or renal haemodynamics upon the simultaneous administration of noradrenaline. Based on the present findings it is suggested that renin secretion is controlled by both alpha and beta receptors. Beta receptor simulation exerts a direct action, whereas alpha stimulation appears to be mediated in part by indirect mechanisms such as renal haemodynamics.  相似文献   

12.
Exaggerated natriuresis in experimental hypertension   总被引:1,自引:0,他引:1  
The exaggerated natriuretic response to intravenous isotonic saline volume expansion in conscious spontaneous hypertensive rats (SHR), compared to normotensive Wistar-Kyoto rats (WKY), is associated with an exaggerated inhibition of renal nerve activity. Following bilateral renal denervation, the natriuresis was significantly attenuated in SHR but unaffected in WKY. Thus, the exaggerated natriuretic response to intravenous isotonic saline in SHR is dependent on their enhanced inhibition of renal nerve activity. Conscious Dahl salt-sensitive rats, on either low or high salt diet, did not exhibit an exaggerated natriuretic response to intravenous isotonic saline volume expansion which may be explained by their known impairment of cardiopulmonary baroreceptor reflex mediated suppression of efferent sympathetic nerve activity during intravenous volume expansion. Conscious hypertensive DOCA-NaCl rats exhibited an exaggerated natriuretic response to oral but not to intravenous isotonic saline volume expansion, suggesting differences in gastrointestinal absorption of isotonic saline. It is concluded that enhanced inhibition of efferent renal sympathetic nerve activity via cardiopulmonary baroreceptor reflex activation contributes to the exaggerated natriuretic response to intravenous isotonic saline volume expansion in certain models of experimental hypertension.  相似文献   

13.
电刺激延髓最后区对血浆肾素活性及肾交感神经...   总被引:1,自引:0,他引:1  
邱慧  柴象枢 《生理学报》1992,44(6):569-575
68 urethan-anesthetized rabbits were prepared for registration of changes of respiration, arterial blood pressure (BP), heart rate (HR) and renal sympathetic nerve activity (RSNA) due to stimulation of area postrema (AP) by rectangular pulse trains each lasting for 4 s for every 30 s. During 40 min of such a stimulation paradigm the venous blood samples were collected for radioimmunoassay of plasma renin activity (PRA) (both pre- and post-stimulation), RSNA registered and processed by a computer. Animals were divided into three groups: (1) with AP stimulation only (n = 47); (2) AP stimulation after bilateral renal denervation (n = 13); (3) AP stimulation after propranolol injection (n = 8). In Group I, a 91% increase in PRA, an augmentation of RSNA, a rise of BP and a decrease of HR were observed, while respiration did not show obvious change. In Group II, hemodynamic and RSNA response was similar to that in Group I, but PRA was not changed significantly. In Group III, the effects on BP, HR, respiration and RSNA showed no remarkable changes compared with Group I, but significant inhibition of the response of PRA [from 0.65 +/- 0.07 ng/(ml.h-1) to 0.72 +/- 0.10 ng/(ml.h-1), P > 0.05] was observed. The results mentioned above suggested that electrical stimulation of AP may induce an increase in renin release and renal sympathetic nerve activity and hemodynamic changes in rabbits.  相似文献   

14.
Historically, physiological modulation of the activity of the renin-angiotension system (RAS) was thought to be mediated only by changes in renin secretion. Hence, altered dietary sodium (Na) intake, changes in renal perfusion pressure, and/or renal adrenoreceptor activity would lead to changes in renin release and plasma angiotensin II (Ang II) concentration, which in turn contribute to regulation of blood pressure and sodium balance. Later, it became apparent that angiotensinogen availability and Ang-converting enzyme activity are also rate-limiting factors that influence the activity of RAS. Finally, over the past few years, evidence has accumulated that indicates the number of Ang II receptors and their subtypes are of great importance in regulating the activity and function of RAS. Cloning of the Ang II receptor genes, development of specific receptor-antagonist ligands, and establishment of genetically mutated animal models have led to greater understanding of the role of Ang II receptors in the regulation of RAS function and activity. This review focuses on the functions and regulation of Ang II receptors in vascular tissues and in the adrenal gland. The authors suggest that identification of control elements for Ang II receptor expression, which are tissue-specific, may provide a basis for future therapeutic manipulation of Ang II receptors in cardiovascular disease states.  相似文献   

15.
The aim of this paper is to precise the involvement of the nervous system in blood glucose regulation. The relevant mechanisms, triggered by blood glucose changes (increase or decrease of glycemia), intervene through the control of pancreatic and surrenal hormone release on the one hand, and hepatic glucose synthesis on the other hand. The part of various efferents and afferents, sensory endings and central "glucosensitive" neurons was analyzed in different situations. 1) Hyperglycemia increases the activation of the pancreatic parasympathetic fibres and decreases that of the surrenal sympathetic fibres. Hypoglycemia elicits reverse effects in the two types of efferents. 2) Hyperglycemia produces an activation in hepatic efferent vagal fibres and thus an acceleration of glycogen synthesis. Reversely, hypoglycemia stimulates both the hepatic sympathetic efferents and the glucose release by the liver. 3) The gustative receptors and the gastro-intestinal glucoreceptors are stimulated by glucose, which produces an insulin release. 4) The various kinds of afferents modify the efferent control of blood glucose level, through the "glucosensitive" central neurons located in hypothalamic and medullary regions.  相似文献   

16.
It was hypothesized that renal sympathetic nerve activity (RSNA) and neuronal nitric oxide synthase (nNOS) are involved in the acute inhibition of renin secretion and the natriuresis following slow NaCl loading (NaLoad) and that RSNA participates in the regulation of arterial blood pressure (MABP). This was tested by NaLoad after chronic renal denervation with and without inhibition of nNOS by S-methyl-thiocitrulline (SMTC). In addition, the acute effects of renal denervation on MABP and sodium balance were assessed. Rats were investigated in the conscious, catheterized state, in metabolic cages, and acutely during anesthesia. NaLoad was performed over 2 h by intravenous infusion of hypertonic solution (50 micromol.min(-1).kg body mass(-1)) at constant body volume conditions. SMTC was coinfused in amounts (20 microg.min(-1).kg(-1)) reported to selectively inhibit nNOS. Directly measured MABPs of acutely and chronically denervated rats were less than control (15% and 9%, respectively, P < 0.005). Plasma renin concentration (PRC) was reduced by renal denervation (14.5 +/- 0.2 vs. 19.3 +/- 1.3 mIU/l, P < 0.005) and by nNOS inhibition (12.4 +/- 2.3 vs. 19.6 +/- 1.6 mlU/l, P < 0.005). NaLoad reduced PRC (P < 0.05) and elevated MABP modestly (P < 0.05) and increased sodium excretion six-fold, irrespective of renal denervation and SMTC. The metabolic data demonstrated that renal denervation lowered sodium balance during the first days after denervation (P < 0.001). These data show that renal denervation decreases MABP and renin secretion. However, neither renal denervation nor nNOS inhibition affects either the renin down-regulation or the natriuretic response to acute sodium loading. Acute sodium-driven renin regulation seems independent of RSNA and nNOS under the present conditions.  相似文献   

17.
Under steady-state conditions, urinary sodium excretion matches dietary sodium intake. Because extracellular fluid osmolality is tightly regulated, the quantity of sodium in the extracellular fluid determines the volume of this compartment. The left atrial volume receptor mechanism is an example of a neural mechanism of volume regulation. The left atrial mechanoreceptor, which functions as a sensor in the low-pressure vascular system, is located in the left atrial wall, which has a well-defined compliance relating intravascular volume to filling pressure. The left atrial mechanoreceptor responds to changes in wall left atrial tension by discharging into afferent vagal fibers. These fibers have suitable central nervous system representation whose related efferent neurohumoral mechanisms regulate thirst, renal excretion of water and sodium, and redistribution of the extracellular fluid volume. Efferent renal sympathetic nerve activity undergoes appropriate changes to facilitate renal sodium excretion during sodium surfeit and to facilitate renal sodium conservation during sodium deficit. By interacting with other important determinants of renal sodium excretion (e.g., renal arterial pressure), changes in efferent renal sympathetic nerve activity can significantly modulate the final renal sodium excretion response with important consequences in pathophysiological states (e.g., hypertension, edema-forming states).  相似文献   

18.
The sympathetic nervous system is essential for the cardiovascular responses to stimulation of visceral afferents. It remains unclear how the reflex-evoked sympathetic output is distributed to different vascular beds to initiate the hemodynamic changes. In the present study, we examined changes in regional sympathetic nerve activity and blood flows in anesthetized cats. Cardiovascular reflexes were induced by either electrical stimulation of the right splanchnic nerve or application of 10 microg/ml of bradykinin to the gallbladder. Blood flows were measured using colored microspheres or the Transonic flow meter system. Sympathetic efferent activity was recorded from the left splanchnic, inferior cardiac, and tibial nerves. Stimulation of visceral afferents decreased significantly blood flows in the celiac (from 49 +/- 4 to 25 +/- 3 ml/min) and superior mesenteric (from 35 +/- 4 to 23 +/- 2 ml/min) arteries, and the vascular resistance in the splanchnic bed was profoundly increased. Consistently, stimulation of visceral afferents decreased tissue blood flows in the splanchnic organs. By contrast, activation of visceral afferents increased significantly blood flows in the coronary artery and portal vein but did not alter the vascular resistance of the femoral artery. Furthermore, stimulation of visceral afferents increased significantly sympathetic efferent activity in the splanchnic (182 +/- 44%) but not in the inferior cardiac and tibial nerves. Therefore, this study provides substantial new evidence that stimulation of abdominal visceral afferents differentially induces sympathetic outflow to the splanchnic vascular bed.  相似文献   

19.
The effect of altered tubular sodium reabsorption on renin secretion (RSR) was examined under conditions in which other factors influencing renin release could be controlled or excluded. To do this, isolated canine kidneys were perfused at constant pressure with blood circulating from donor animals. Volume expansion or hemorrhage of the donor dogs produced large changes in the animal's blood pressure, renal function, sodium excretion (UNaV), and RSR, but were without effect on renal hemodynamics, UNaV, or RSR in the perfused kidney. Hemodilution without volume expansion, resulted in hypotension, decreased UNaV and increased RSR in the donor dogs, and increased UNaV and suppressed RSR in the perfused kidney. These effects of hemodilution in the perfused kidney were partially reversed when plasma protein concentration was restored to control levels with hyperoncotic albumin, and, overall, there was a significant inverse relationship between electrolyte excretion and RSR. These results provide new evidence for the hypothesis that the rate at which sodium is delivered to the macula densa is an important determinant of the rate of renin secretion.  相似文献   

20.
Physical load increases sympathetic nervous activity, which results in an increased cardiac output, constriction of peripheral vessels, and elevated systemic blood pressure. These changes are outcomes of two mechanisms: the central command from cerebral structures that trigger voluntary movements to activate the vasomotor center and the reflexes initiated by mechanical and metabolic changes in a working muscle. The latter mechanism of the sympathetic system activation is termed ergoreflex. The main effects of ergoreflex on the indices of systemic hemodynamics are the following: activation of mechanosensitive afferents mainly leads to inhibition of the tonic vagal effects on the heart, which explains the rapid increase in heartbeats upon loading; activation of chemosensitive afferents comes with some delay in pace with metabolite accumulation in muscles and leads to an increase in efferent sympathetic activity and a rise in blood pressure. The metabolic reflex effect is particularly high in the case of muscle fatigue. This review deals with the mechanisms underlying the ergoreflex and their adaptation to hypodynamia, physical training, and some pathologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号