首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

The NANOG gene is expressed in mammalian embryonic stem cells where it maintains cellular pluripotency. An unusually large family of pseudogenes arose from it with one unprocessed and ten processed pseudogenes in the human genome. This article compares the NANOG gene and its pseudogenes in the human and chimpanzee genomes and derives an evolutionary history of this pseudogene family.  相似文献   

2.
Seven members of the human 3β-hydroxysteroid dehydrogenase (3β-HSD) gene family (HGMW-approved symbols HSD3BP1–HSD3BP5) have been cloned and physically mapped. HSD3B1 and 2 express 3β-HSD enzymes; HSD3Bψ1–5 are unprocessed pseudogenes that are closely related to HSD3B1 and 2 but contain no corresponding open reading frames. mRNA is expressed from ψ4 and ψ5 in several tissues, but with altered splice sites that disrupt reading frames. A 0.5-Mb contig of 3 yeast artificial chromosome and 32 bacterial artificial chromosome genomic clones contained no additional members of the gene family. The seven genes and pseudogenes mapped within 230 kb in the order HSD3Bψ5–ψ4–ψ3–HSD3B1–ψ1–ψ2–HSD3B2. HSD3B1 and 2 are in direct repeat, 100 kb apart. Six HSD3B2 mutations involve substitutions that are present in several of the pseudogenes. In four cases, mutations arose in CpG sites that are conserved within the gene cluster. The tendency for CpG sites to mutate by transition provides an adequate explanation for these HSD3B2 mutations, which are unlikely to be due to recombination or conversion within the gene family.  相似文献   

3.
Seven members of the human 3beta-hydroxysteroid dehydrogenase (3beta-HSD) gene family (HGMW-approved symbols HSD3BP1-HSD3BP5) have been cloned and physically mapped. HSD3B1 and 2 express 3beta-HSD enzymes; HSD3Bpsi1-5 are unprocessed pseudogenes that are closely related to HSD3B1 and 2 but contain no corresponding open reading frames. mRNA is expressed from psi4 and psi5 in several tissues, but with altered splice sites that disrupt reading frames. A 0.5-Mb contig of 3 yeast artificial chromosome and 32 bacterial artificial chromosome genomic clones contained no additional members of the gene family. The seven genes and pseudogenes mapped within 230 kb in the order HSD3Bpsi5-psi4-psi3-HSD3B1-psi1-psi2 -HSD3B2. HSD3B1 and 2 are in direct repeat, 100 kb apart. Six HSD3B2 mutations involve substitutions that are present in several of the pseudogenes. In four cases, mutations arose in CpG sites that are conserved within the gene cluster. The tendency for CpG sites to mutate by transition provides an adequate explanation for these HSD3B2 mutations, which are unlikely to be due to recombination or conversion within the gene family.  相似文献   

4.
De Grassi A  Lanave C  Saccone C 《Gene》2006,371(2):224-233
To investigate the integrated evolution of mitochondrial and nuclear genomes in the eukaryotic cell, we have focused our attention on OXPHOS (oxidative phosphorylation) gene families which encode proteins involved in the main mitochondrial function. The present study reports the phylogenetic analysis of two OXPHOS gene families: ATP synthase subunit c (or lipid binding protein, LBP) and Cytochrome c (Cytc). Both gene families possess a higher expansion trend than the typically low duplication rate of OXPHOS genes in Metazoa, but follow a completely different evolutionary history, especially in mammals. LBP is represented by three well conserved isoforms in all mammals (P1, P2, P3): only P3 possesses a clearly conserved isoform in all Vertebrates, P1 and P2 were already present before the bird-mammal divergence and there are preliminary evidence from the in silico analysis that P1, the most evolutionary divergent isoform, is poorly expressed and not regulated by NRF1. In contrast, Cytc family presents at least two duplicated genes in all the analysed Vertebrates, is subject to a high expansion trend, especially of processed pseudogenes in mammals, and some events of gain and loss of function can be supposed.  相似文献   

5.
6.
7.
Summary AllAspergillus nidulans 5S rRNA pseudogenes known so far are the result of integration of an approx. 0.2-kbp-long DNA sequence into the 5S rRNA genes. This sequence, called block C, is present in at least five copies in theA. nidulans genome and seems to be associated either with 5S rRNA genes or pseudogenes. In contrast to the 78% sequence conservation of the C-block in pseudogenes, the truncated 5 halves of the pseudogenes are very highly conserved (96.9–100%). We postulate that the 5S rRNA pseudogenes are still a subject of concerted evolution. The C-block sequence shows similarity to the switch region of the mouse heavy chain immunoglobulin gene. A characteristic motif GGGTGAG is repeated several times in both sequences; the sequence conservation is 63%.  相似文献   

8.
The functional gene and three intronless pseudogenes for human triosephosphate isomerase were isolated from a recombinant DNA library and characterized in detail. The functional gene spans 3.5 kilobase pairs and is split into seven exons. Its promoter contains putative TATA and CCAAT boxes and is extremely rich in G and C residues (76%). The pseudogenes share a high degree of homology with the functional gene but contain mutations that preclude the synthesis of an active triosephosphate isomerase enzyme. Sequence divergence calculations indicate that these pseudogenes arose approximately 18 million years ago. We present evidence that there is a single functional gene in the human triosephosphate isomerase gene family.  相似文献   

9.
Sen K  Ghosh TC 《Gene》2012,501(2):164-170
Pseudogenes, the 'genomic fossils' present portrayal of evolutionary history of human genome. The human genes configuring pseudogenes are also now coming forth as important resources in the study of human protein evolution. In this communication, we explored evolutionary conservation of the genes forming pseudogenes over the genes lacking any pseudogene and delving deeper, we probed an evolutionary rate difference between the disease genes in the two groups. We illustrated this differential evolutionary pattern by gene expressivity, number of regulatory miRNA targeting per gene, abundance of protein complex forming genes and lesser percentage of protein intrinsic disorderness. Furthermore, pseudogenes are observed to harbor sequence variations, over their entirety, those become degenerative disease-causing mutations though the disease involvement of their progenitors is still unexplored. Here, we unveiled an immense association of disease genes in the genes casting pseudogenes in human. We interpreted the issue by disease associated miRNA targeting, genes containing polymorphisms in miRNA target sites, abundance of genes having disease causing non-synonymous mutations, disease gene specific network properties, presence of genes having repeat regions, affluence of dosage sensitive genes and the presence of intrinsically unstructured protein regions.  相似文献   

10.
11.
How Many Processed Pseudogenes Are Accumulated in a Gene Family?   总被引:2,自引:0,他引:2       下载免费PDF全文
James Bruce Walsh 《Genetics》1985,110(2):345-364
A simple kinetic model is developed that describes the accumulation of processed pseudogenes in a functional gene family. Insertion of new pseudogenes occurs at rate ν per gene and is countered by spontaneous deletion (at rate δ per DNA segment) of segments containing processed pseudogenes. If there are k functional genes in a gene family, the equilibrium number of processed pseudogenes is k(ν/δ), and the percentage of functional genes in the gene family at equilibrium is 1/[1 + (ν/δ)]. ν/δ values estimated for five gene families ranged from 1.7 to 15. This fairly narrow range suggests that the rates of formation and deletion of processed pseudogenes may be positively correlated for these families. If δ is sufficiently large relative to the per nucleotide mutation rate µ (δ > 20µ), processed pseudogenes will show high homology with each other, even in the absence of gene conversion between pseudogenes. We argue that formation of processed pseudogenes may share common pathways with transposable elements and retroviruses, creating the potential for correlated responses in the evolution of processed pseudogenes due to direct selection for control of transposable elements and/or retroviruses. Finally, we discuss the nature of the selective forces that may act directly or indirectly to influence the evolution of processed pseudogenes.

Anything produced by evolution is bound to be a bit of a mess—S. Brenner

  相似文献   

12.
The DNA immediately flanking the 164-base-pair U1 RNA coding region is highly conserved among the approximately 30 human U1 genes. The U1 multigene family also contains many U1 pseudogenes (designated class I) with striking although imperfect flanking homology to the true U1 genes. Using cosmid vectors, we now have cloned, characterized, and partially sequenced three 35-kilobase (kb) regions of the human genome spanning U1 homologies. Two clones contain one true U1 gene each, and the third bears two class I pseudogenes 9 kb apart in the opposite orientation. We show by genomic blotting and by direct DNA sequence determination that the conserved sequences surrounding U1 genes are much more extensive than previously estimated: nearly perfect sequence homology between many true U1 genes extends for at least 24 kb upstream and at least 20 kb downstream from the U1 coding region. In addition, the sequences of the two new pseudogenes provide evidence that class I U1 pseudogenes are more closely related to each other than to true genes. Finally, it is demonstrated elsewhere (Lindgren et al., Mol. Cell. Biol. 5:2190-2196, 1985) that both true U1 genes and class I U1 pseudogenes map to chromosome 1, but in separate clusters located far apart on opposite sides of the centromere. Taken together, these results suggest a model for the evolution of the U1 multigene family. We speculate that the contemporary family of true U1 genes was derived from a more ancient family of U1 genes (now class I U1 pseudogenes) by gene amplification and transposition. Gene amplification provides the simplest explanation for the clustering of both U1 genes and class I pseudogenes and for the conservation of at least 44 kb of DNA flanking the U1 coding region in a large fraction of the 30 true U1 genes.  相似文献   

13.
The V2R genes are expressed in the mammalian vomeronasal organ, and their products are involved in detecting pheromones. Here, we describe the evolution of the V2R gene family. We have found that the human, chimpanzee, macaque, cow and dog V2R gene families have completely degenerated. Each now contains 9-20 pseudogenes but no intact V2R genes. By contrast, opossum has approximately 90 intact V2R genes that mostly arose by duplication after opossum and rodent lineages diverged. One V2R gene subfamily with unusual biology evolved atypically, showing limited expansion in rodents and persistence of a single, albeit sometimes dysfunctional, ortholog in all other species examined.  相似文献   

14.
15.
Comparative evolutionary analyses of gene families among divergent lineages can provide information on the order and timing of major gene duplication events and evolution of gene function. Here we investigate the evolutionary history of the α-globin gene family in mammals by isolating and characterizing α-like globin genes from an Australian marsupial, the tammar wallaby, Macropus eugenii. Sequence and phylogenetic analyses indicate that the tammar α-globin family consists of at least four genes including a single adult-expressed gene (α), two embryonic/neonatally expressed genes (ζ and ζ′), and θ-globin, each orthologous to the respective α-, ζ-, and θ-globin genes of eutherian mammals. The results suggest that the θ-globin lineage arose by duplication of an ancestral adult α-globin gene and had already evolved an unusual promoter region, atypical of all known α-globin gene promoters, prior to the divergence of the marsupial and eutherian lineages. Evolutionary analyses, using a maximum likelihood approach, indicate that θ-globin, has evolved under strong selective constraints in both marsupials and the lineage leading to human θ-globin, suggesting a long-term functional status. Overall, our results indicate that at least a four-gene cluster consisting of three α-like and one β-like globin genes linked in the order 5′–ζ–α–θ–ω–3′ existed in the common ancestor of marsupials and eutherians. However, results are inconclusive as to whether the two tammar ζ-globin genes arose by duplication prior to the radiation of the marsupial and eutherian lineages, with maintenance of exon sequences by gene conversion, or more recently within marsupials.Reviewing Editor: Dr. John Oakeshott  相似文献   

16.
17.
Hua Z  Zou C  Shiu SH  Vierstra RD 《PloS one》2011,6(1):e16219
The emergence of multigene families has been hypothesized as a major contributor to the evolution of complex traits and speciation. To help understand how such multigene families arose and diverged during plant evolution, we examined the phylogenetic relationships of F-Box (FBX) genes, one of the largest and most polymorphic superfamilies known in the plant kingdom. FBX proteins comprise the target recognition subunit of SCF-type ubiquitin-protein ligases, where they individually recruit specific substrates for ubiquitylation. Through the extensive analysis of 10,811 FBX loci from 18 plant species, ranging from the alga Chlamydomonas reinhardtii to numerous monocots and eudicots, we discovered strikingly diverse evolutionary histories. The number of FBX loci varies widely and appears independent of the growth habit and life cycle of land plants, with a little as 198 predicted for Carica papaya to as many as 1350 predicted for Arabidopsis lyrata. This number differs substantially even among closely related species, with evidence for extensive gains/losses. Despite this extraordinary inter-species variation, one subset of FBX genes was conserved among most species examined. Together with evidence of strong purifying selection and expression, the ligases synthesized from these conserved loci likely direct essential ubiquitylation events. Another subset was much more lineage specific, showed more relaxed purifying selection, and was enriched in loci with little or no evidence of expression, suggesting that they either control more limited, species-specific processes or arose from genomic drift and thus may provide reservoirs for evolutionary innovation. Numerous FBX loci were also predicted to be pseudogenes with their numbers tightly correlated with the total number of FBX genes in each species. Taken together, it appears that the FBX superfamily has independently undergone substantial birth/death in many plant lineages, with its size and rapid evolution potentially reflecting a central role for ubiquitylation in driving plant fitness.  相似文献   

18.
Summary Two families of high-cysteine chorion proteins inBombyx mori are encoded in 15 tandemly arranged nonidentical gene pairs. It is assumed that this locus arose by duplication with subsequent sequence divergence. We have compared DNA sequences from two such neighboring pairs of genes in an attempt to understand the manner in which diversity has been generated and/or removed. A high level of sequence identity (91%–99%) was found between the repeats throughout the transcribed and flanking regions, with two significant exceptions. First, in the DNA segment encoding a conserved region of the chorion proteins, ten substitutions were detected in a 39-base-pair region. This localized region of high variability would suggest an intergene conversion-like event. Second, a length difference of 141 base pairs was detected in a region encoding the carboxy-terminal arm of the protein. This difference can be explained by three separate reiterations of single codons (3 base pairs) separated in time by duplication or triplication events.  相似文献   

19.
We present a molecular and cellular phenomenon underlying the intriguing increase in phenotypic organizational complexity. For the same set of human–mouse orthologous genes (11 534 gene pairs) and homologous tissues (32 tissue pairs), human shows a greater fraction of tissue-specific genes and a greater ratio of the total expression of tissue-specific genes to housekeeping genes in each studied tissue, which suggests a generally higher level of evolutionary cell differentiation (specialization). This phenomenon is spectacularly more pronounced in those human tissues that are more directly involved in the increase of complexity, longevity and body size (i.e. it is reflected on the organismal level as well). Genes with a change in expression breadth show a greater human–mouse divergence of promoter regions and encoded proteins (i.e. the functional genomics data are supported by the structural analysis). Human also shows the higher expression of translation machinery. The upstream untranslated regions (5′UTRs) of human mRNAs are longer than mouse 5′UTRs (even after correction for the difference in genome sizes) and contain more uAUG codons, which suggest a more complex regulation at the translational level in human cells (and agrees well with the augmented cell specialization).  相似文献   

20.
Hughes AL  Friedman R 《Genomics》2006,88(4):462-467
Aire (autoimmune regulatory protein) enhances expression of certain genes in thymic medullary epithelial cells (MECs). Using publicly available data, we examined expression patterns, across 82 distinct tissue types, of genes previously identified as Aire-activated, Aire-repressed, and Aire-independent. Consistent with the hypothesis that the effect of Aire in MECs is to increase expression of tissue-specific genes, Aire-activated genes had a low overall level of expression but a large range between the lowest and the highest levels of expression in different tissues. By contrast, Aire-repressed genes tended to have a high overall level of expression and less marked differences between the highest and the lowest levels of expression. Nonetheless, the expression scores of Aire-repressed genes showed broader ranges of values than those of Aire-independent genes. Phylogenetic analyses of members of two gene families that included two Aire-activated genes illustrated two contrasting patterns of the relationship of Aire-activated genes within the same family. The two Aire-activated members of the major urinary protein family arose through a recent gene duplication (after the rat-mouse divergence), whereas the most recent common ancestor of the two Aire-activated members of cytochrome p450 family 2 duplicated prior to the radiation of the eutherian orders. In the latter family, the Aire-activated Cyp2a4 gene and the Aire-independent Cyp2a5 gene arose through a recent duplication, after the rat-mouse divergence. Thus the set of Aire-activated genes is subject to change over evolutionary time and includes genes of recent origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号