首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Viability measurements in mammalian cell systems   总被引:7,自引:0,他引:7  
  相似文献   

2.
A fluorescent chemoaffinity label o-phthalaldehyde (OPTA) was used to ascertain the conformational flexibility and polarity at the active site of xylanase I (Xyl I). The kinetics of inactivation of Xyl I with OPTA revealed that complete inactivation occurred due to the binding of one molecule of OPTA to the active site of Xyl I. The formation of a single fluorescent isoindole derivative corroborated these findings. OPTA has been known to form a fluorescent isoindole derivative by crosslinking the proximal thiol and amino groups of cysteine and lysine. The involvement of cysteine in the formation of a Xyl I-isoindole derivative has been negated by fluorometric and chemical modification studies on Xyl I with group-specific reagents and by amino-acid analysis. The kinetic analysis of diethylpyrocarbonate-modified Xyl I established the presence of an essential histidine at or near the catalytic site of Xyl I. Modification of histidine and lysine residues by diethylpyrocarbonate and 2,4,6-trinitrobenzenesulfonic acid, respectively, abolished the ability of the enzyme to form an isoindole derivative with OPTA, indicating that histidine and lysine participate in the formation of the isoindole complex. A mechanism for the reaction of OPTA with histidine and lysine residues present in the protein structure has been proposed. Experimental evidence presented here suggests for the first time that the active site of Xyl I is conformationally more flexible and more easily perturbed in the presence of denaturants than the molecule as a whole. The changes in the fluorescence emission maxima of a model compound (isoindole adduct) in solvents of different polarity were compared with the fluorescence behaviour of the Xyl I-isoindole derivative, leading to the conclusion that the active site is located in a microenvironment of low polarity.  相似文献   

3.
Stability of o-phthalaldehyde-derived isoindoles   总被引:1,自引:0,他引:1  
The degradation of 1-alkylthio-2-alkylisoindoles, generated in situ by reaction of o-phthalaldehyde with primary alkylamines in the presence of selected thiols, was studied under conditions typical of those used in precolumn derivatization applications. In all cases, loss of isoindole followed pseudo first order kinetics and was strongly accelerated by excess o-phthalaldehyde in the reaction mixture. Reactivity toward o-phthalaldehyde was found to be influenced by a number of experimental parameters including thiol structure, thiol concentration, amine structure, solvent composition, and pH. In the absence of excess o-phthalaldehyde, the stability of all derivatives examined was excellent. These results provide a basis for optimization of reaction conditions for maximum derivative stability.  相似文献   

4.
Addition of hydroxypropyl-beta-cyclodextrin to o-phthalaldehyde (OPA)-amino acid-thiol reaction mixtures is shown to cause significant enhancement of the fluorescence of the isoindole product for a wide range of amino acids, with the largest effects observed in the cases of glycine and lysine. The largest enhancement observed was a factor of 2.67 in the case of the derivative of glycine. This fluorescence enhancement is the result of the formation of a 1:1 host:guest inclusion complex between the isoindole and the cyclodextrin. Relatively small association constants of 44 and 130 M(-1) were obtained for the inclusion of the derivatives of glycine and lysine, respectively. Inclusion of the isoindole derivative into hydroxypropyl-beta-cyclodextrin was also found to result in a significant stabilization of the isoindole derivatives, contrary to what has been previously reported for inclusion into beta-cyclodextrin. For example, the lifetime of the lysine derivative was found to increase from 42 to 222 min, a factor of 5.3. These results have potential applications in fluorescence-based HPLC and high-performance capillary electrophoresis amino acid analysis methods using OPA derivation. Addition of hydroxypropyl-beta-cyclodextrin to the reaction mixture results in an increase in both the fluorescence and the stability of the isoindole product, providing potentially significant improvements to the method.  相似文献   

5.
A rapid precolumn high-performance liquid chromatography method based on fluorescence detection has been developed for the measurement of multiple amino acids from both ex vivo and in vivo biological samples using monolithic C18 columns. A mixture of 18 primary amino acids were derivatised with napthalene-2,3-dicarboxaldehyde (NDA) in the presence of cyanide. The resulting isoindole derivatives were resolved within 10 min using a linear binary gradient elution profile with Rs values in the range 1.2-9.0. The limit of detection (LOD) was found to be between 6.0 and 60 fmol for 5 microl injection with a signal to noise ratio of 3:1. The NDA derivatives were found to be stable for 9 h at 4 degrees C. This assay has been employed for the rapid analysis of amino acids from brain tissue and microdialysis samples. Examples of application of the method are given.  相似文献   

6.
A modified Edman degradation method where fluorescent derivatives of amino acids were generated from the postcleavage products of a peptide is described. In the method, the target peptide was applied onto double glass fiber membranes in a small filter disk (4 mm i.d.) and then treated with small amounts of reagents for the manual sequencing of the peptide. The anilinothiazolinone (ATZ) of N-terminus amino acid residue after the isolation from the solid-phase membranes was reacted with a primary amine, 4-(1′-cyanoisoindolyl)aniline (CIA), to form a more stable and sensitive fluorescent derivative, phenylthiocarbamoyl-CIA. An average yield of 85% was obtained in neutral pH conditions for the CIA reaction. The ATZ-CIA-amino acids were separated by reversed-phase liquid chromatography and detected by fluorometry. The lower limits of the detection for amino acids after the Edman degradation were 0.16 to 0.52 pmol (signal/noise ratio = 3) on the column. The sensitivity was approximately 10 times higher than ultraviolet absorbance detection of phenylthiohydantoin products in the conventional Edman degradation. The suitability of the method was demonstrated by the sensitive manual sequencing of insulin chain B composed of 30 amino acids.  相似文献   

7.
Conformation and microenvironment at the active site of 1,4-beta-D-glucan glucanohydrolase was probed with fluorescent chemo-affinity labeling using o-phthalaldehyde. OPTA has been known to form a fluorescent isoindole derivative by cross-linking the proximal thiol and amino groups of cysteine and lysine. Modification of lysine of the enzyme by TNBS and of cysteine residue by PHMB abolished the ability of the enzyme to form an isoindole derivative with OPTA. Kinetic analysis of the TNBS and PHMB-modified enzyme suggested the presence of essential lysine and cysteine residues, respectively, at the active site of the enzyme. The substrate protection of the enzyme with carboxymethylcellulose (CMC) confirmed the involvement of lysine and cysteine residues in the active site of the enzyme. Multiple sequence alignment of peptides obtained by tryptic digestion of the enzyme showed cysteine is one of the conserved amino acids corroborating the chemical modification studies.  相似文献   

8.
Anish R  Rao M 《Biochimie》2007,89(12):1489-1497
A bifunctional high molecular weight (Mr, 64,500 Da) beta-1-3, 1-4 glucan 4-glucanohydrolase was purified to homogeneity from Thermomonospora sp., exhibiting activity towards lichenan and xylan. A kinetic method was used to analyze the active site that hydrolyzes lichenan and xylan. The experimental data was in agreement with the theoretical values calculated for a single active site. Probing the conformation and microenvironment at active site of the enzyme by fluorescent chemo-affinity label, OPTA resulted in the formation of an isoindole derivative with complete inactivation of the enzyme to hydrolyse both lichenan and xylan confirmed the results of kinetic method. OPTA forms an isoindole derivative by cross-linking the proximal thiol and amino groups. The modification of cysteine and lysine residues by DTNB and TNBS respectively abolished the ability of the enzyme to form an isoindole derivative with OPTA, indicating the participation of cysteine and lysine in the formation of isoindole complex.  相似文献   

9.
Evidence was presented suggesting that the fluorescent isoindole produced by reaction of o-phthalaldehyde (OPA), ethanethiol, and primary amine was formed by initial imine formation followed by conversion to an alpha-alkylaminobenzylsulfide and subsequent ring closure to form the isoindole nucleus. This mechanism suggested that the minimum structural requirement for condensation to an isoindole was an o-diacyl benzene in which one of the carbonyl groups was aldehydic. A major drawback of OPA as an analytical reagent is the limited stability of the fluorescent 1,2-disubstituted isoindole. Since isoindole instability is related to autoxidation at C-3, the use of o-(formyl) arylketones as alternatives to OPA is attractive in increasing the lifetime of the fluorescent species in that such reagents would form 1,2,3-trisubstituted isoindoles. Two compounds, o-acetylbenzaldehyde (OAB) and o-benzoylbenzaldehyde (OBB), were synthesized and evaluated as potential fluorogenic reagents. Both formed fluorescent products. The rate of formation of isoindole from the latter was too slow to make it of practical analytical value; however, OAB formed isoindoles with t1/2 less than 10 s and offered markedly improved stability over that observed with OPA.  相似文献   

10.
Two different preparations of photosystem II (PSII) (BBY-type membrane fragments and PSII core complexes) were isolated from 14-day-old pea seedlings (Pisum sativum L.) and used for spectral and kinetic study of photobleaching of chlorophyll (Chl) and amino acids under photoinhibitory conditions. A short-term (2–4 min) illumination of PSII preparations with high-intensity red light (λ > 610 nm, 800 W/m2) resulted in irreversible photobleaching of Chl at 672 and 682 nm under conditions of both acceptor- and donor-side photoinhibition. At longer illumination exposures (> 10 min) the photobleaching maximum at 682 nm was predominant. The calculated kinetic constants for Chl photobleaching in both absorption bands at temperatures of 20 and 4°C had similar values under different photoinhibitory conditions. The shape of action spectrum for Chl photooxidation indicates that photoinhibition of PSII was sensitized by two spectral forms of Chl with absorption maxima at 670 and 680 nm. The photobleaching of amino acids in PSII membrane fragments was only observed during acceptor-side photoinhibition and displayed the photobleaching peaks at 220 and 274 nm. The photogeneration of superoxide anion radical during donor-side photoinhibition was 4–6 times larger than during acceptor-side photoinhibition. Nevertheless, the kinetics of Chl and amino acid photobleaching in PSII preparations showed no appreciable differences. The activation energies for Chl photooxidation were estimated around 3.5 and 9 kcal/mol during acceptor- and donor-side photoinhibition, respectively, providing evidence for the involvement of biochemical stages in PSII photoinhibition. Based on the data obtained, it is proposed that the antenna Chl, rather than Chl of the reaction center, is the sensitizer for both acceptor- and donor-side photoinhibition of PSII in vitro.  相似文献   

11.
An automated precolumn derivatisation method has been developed for the measurement of fourteen amino acids in brain tissue and microdialysate samples. The method involves labelling amino acids with naphthalene-2,3-dicarboxaldehyde (NDA) in the presence of cyanide (CN). The resulting highly stable N-substituted 1-cyanobenz[f]isoindole (CBI) derivatives were separated using a binary gradient elution profile and detected fluorometrically. The order of elution of the derivatised amino acids was confirmed by using liquid chromatography with fluorescence and mass spectrometric detection in tandem. Linear calibration plots were obtained for all amino acids in the range studied (0.2–12.5 μM). The limit of detection for CBI derivatives of amino acids was in the range 5–20 fmol (S/N=2) using a 5 μl injection volume. The method has been used for the measurement of amino acids in microdialysates from rat brain and tissue homogenates from different regions of mouse brain.  相似文献   

12.
Chicken liver mitochondrial phosphoenolpyruvate carboxykinase is inactivated by o-phthalaldehyde. The inactivation followed pseudo first-order kinetics, and the second-order rate constant for the inactivation process was 29 M-1 s-1 at pH 7.5 and 25 degrees C. The modified enzyme showed maximal fluorescence at 427 nm upon excitation at 337 nm, consistent with the formation of isoindole derivatives by the cross-linking of proximal cysteine and lysine residues. Activities in the physiologic reaction and in the oxaloacetate decarboxylase reaction were lost in parallel upon modification with o-phthalaldehyde. Plots of (percent of residual activity) versus (mol of isoindole incorporated/mol of enzyme) were biphasic, with the initial loss of enzymatic activity corresponding to the incorporation of one isoindole derivative/enzyme molecule. Complete inactivation of the enzyme was accompanied by the incorporation of 3 mol of isoindole/mol of enzyme. beta-Sulfopyruvate, an isoelectronic analogue of oxaloacetate, completely protected the enzyme from reacting with o-phthalaldehyde. Other substrates provided protection from inactivation, in decreasing order of protection: oxaloacetate greater than phosphoenolpyruvate greater than MgGDP, MgGTP greater than oxalate. Cysteine 31 and lysine 39 have been identified as the rapidly reacting pair in isoindole formation and enzyme inactivation. Lysine 56 and cysteine 60 are also involved in isoindole formation in the completely inactivated enzyme. These reactive cysteine residues do not correspond to the reactive cysteine residue identified in previous iodoacetate labeling studies with the chicken mitochondrial enzyme (Makinen, A. L., and Nowak, T. (1989) J. Biol. Chem. 264, 12148-12157). Protection experiments suggest that the sites of o-phthalaldehyde modification become inaccessible when the oxaloacetate/phosphoenolpyruvate binding site is saturated, and sequence analyses indicate that cysteine 31 is located in the putative phosphoenolpyruvate binding site.  相似文献   

13.
J M Bailey  J E Shively 《Biochemistry》1990,29(12):3145-3156
Proteins and peptides can be sequenced from the carboxy terminus with isothiocyanate reagents to produce amino acid thiohydantoin derivatives. Previous studies in our laboratory indicated that the use of trimethylsilyl isothiocyanate (TMS-ITC) as a coupling reagent significantly improved the yields and reaction conditions and reduced the number of complicating side products [Hawke et al. (1987) Anal. Biochem. 166, 298]. The present study further explores the conditions for formation of the peptidylthiohydantoins by TMS-ITC and examines the cleavage of these peptidylthiohydantoin derivatives into a shortened peptide and thiohydantoin amino acid derivative. Schizophrenia-related peptide (Thr-Val-Leu) was used as a model peptide and was treated with acetic anhydride and TMS-ITC at 50 degrees C for 30 min, and the peptidylthiohydantoin derivatives were isolated by reverse-phase HPLC and characterized by FAB-MS. The purified derivatives were subjected to a variety of cleavage conditions, and rate constants for hydrolysis were determined. Hydrolysis with acetohydroxamate as reported originally by Stark [(1968) Biochemistry 7, 1796] was found to give excellent cleavage of the terminal thiohydantoin amino acid, but also led to the formation of stable hydroxamate esters of the shortened peptide which are poorly suited for subsequent rounds of degradation. Hydrolysis with 2% aqueous triethylamine under mild conditions (1-5 min at 50 degrees C) was found to be more suitable for carboxy-terminal sequence analysis by the thiocyanate method. The shortened peptide, which could be isolated and subjected to a second round of degradation, and the released thiohydantoin amino acid are formed in good yield (90-100%). Several other small peptides containing 15 different C-terminal amino acid side chains were also investigated in order to examine any interfering reactions that might occur when these side chains are encountered in a stepwise degradation using the thiocyanate chemistry. Quantitative yields of peptidylthiohydantoins were obtained for all the amino acids examined with the following exceptions: low yields were obtained for C-terminal Glu or Thr, and no peptidylthiohydantoins were obtained for C-terminal Pro or Asp. Asparagine was found to form cyclic imides (64%) at the penultimate position (C-2) during hydrolysis of the peptidylthiohydantoins by 2% aqueous triethylamine. Cleavage of C-terminal Asn under these conditions led to the formation of the expected shortened peptide (69%), but also to the formation of a shortened peptide (31%) with a C-terminal amide. Problems with Glu and Thr could be solved by minimizing the reaction time with acetic anhydride.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Hydrolytic decomposition of four 5-azacytosine acyclic nucleoside phosphonates was studied. Products of the decomposition are carbamoylguanidine derivatives. Stability and decomposition products of HPMP-5-azaC (a 5-azacytosine derivative with strong antiviral activity) differ from the other derivatives. The reaction pathway of HPMP-5-azaC involves a formyl derivative formed by intramolecular transformylation reaction.  相似文献   

15.
The fluorescence properties of the products formed by reaction of o-phthaldialdehyde with amino acids and their derivatives, in the presence of thiol compounds, have been studied. The emission spectra, quantum yields, and lifetimes depend on the primary amine and thiol compound used; the observations confirm the report (Simsons, S.S., Jr. and Johnson, D.F. (1978) J. Org. Chem 43, 2886--2891) that the product incorporates molecules of all three types of compounds. The fluorescence quantum yields of o-phthaldialdehyde derivatives of the naturally occuring amino acids ranged from 0.33 to 0.47, using 2-mercaptoethanol as the thiol compound. The fluorescence lifetimes were about 18--20 ns. Lower quantum yields were obtained when mercaptoethanol was replaced by dithiothreitol or ethnethiol. Derivatives of amino acid amides and peptides had quantum yeilds as low as 0.03, due to quenching by the carboxamide group. The intramolecular quenching was relieved by the detergent, sodium dodecyl sulfate, and by dimethylsulfoxide. Monosubstituted lysine exhibited a normal fluorescence, but the di-substituted product was largely quenched, presumably due to interaction between the two isoindole fluorophors. Fluorscence stopped-flow experiments showed that the alpha- and epsilon-amino groups reacted at different rates, with the epsilon-amion group reacting 10 times faster, with a t 1/2 of about 6 s under pseudo first order conditions at pH 9.0 with 10(-3) M o-phthaldialdehyde. The amount of instability shown by the o-phthaldialdehyde derivatives depended on the thiol compound used, the primary amine involved, and the solvent. Cysteine and o-phthaldialdehyde reacted to give an unstable, weakly fluorescent product; but cysteine could be assayed normally if its sulfhydryl was blocked. The o-phthaldialdehyde reagent was discussed in relation to fluorescamine, another reagent for primary amines.  相似文献   

16.
R N Puri  D Bhatnagar  R Roskoski 《Biochemistry》1985,24(23):6499-6508
The catalytic subunit of adenosine cyclic 3',5'-monophosphate dependent protein kinase from bovine skeletal muscle was rapidly inactivated by o-phthalaldehyde at 25 degrees C (pH 7.3). The reaction followed pseudo-first-order kinetics, and the second-order rate constant was 1.1 X 10(2) M-1 s-1. Absorbance and fluorescence spectroscopic data were consistent with the formation of an isoindole derivative (1 mol/mol of enzyme). The reaction between the catalytic subunit and o-phthalaldehyde was not reversed by the addition of reagents containing free primary amino and sulfhydryl functions following inactivation. The reaction, however, could be arrested at any stage during its progress by the addition of an excess of cysteine or less efficiently by homocysteine or glutathione. The catalytic subunit was protected from inactivation by the presence of the substrates magnesium adenosine triphosphate and an acceptor serine peptide substrate. The decrease in fluorescence emission intensity of incubation mixtures containing iodoacetamide- or 5'-[p-(fluorosulfonyl)benzoyl]adenosine-modified catalytic subunit and o-phthalaldehyde paralleled the loss of phosphotransferase activity. Catalytic subunit denatured with urea failed to react with o-phthalaldehyde. Inactivation of the catalytic subunit by o-phthalaldehyde is probably due to the concomitant modification of lysine-72 and cysteine-199. The proximal distance between the epsilon-amino function of the lysine and the sulfhydryl group of the cysteine residues involved in isoindole formation in the native enzyme is estimated to be approximately 3 A. The molar transition energy of the catalytic subunit-o-phthalaldehyde adduct was 121 kJ/mol and compares favorably with a value of 127 kJ/mol for the 1-[(beta-hydroxyethyl)thio]-2-(beta-hydroxyethyl)isoindole in hexane, indicating that the active site lysine and cysteine residues involved in formation of the isoindole derivative of the catalytic subunit are located in a hydrophobic environment. o-Phthalaldehyde probably acts as an active site specific reagent for the catalytic subunit.  相似文献   

17.
A simple and efficient procedure for the fluorescent labeling of saccharides is a prerequisite step for imaging the transport of polysaccharides in living cells. We report a one-pot strategy for the fluorescent labeling of saccharides with fluorescein-5-thiosemicarbazide (FTSC), which introduces the thiosemicarbazide group of FTSC to the aldehyde group at the reducing end of saccharides to form stable amino derivatives via reductive amination. The Glc-FTSC derivative was characterized by HPLC–MS, HRESIMS and NMR spectroscopy. Saccharides were quantitatively labeled with FTSC at 75 °C for 1 h under optimum reaction conditions. Fluorescence studies illustrated that the conjugation of FTSC to saccharides did not change its florescence properties (λex = 495 nm, λem = 517 nm), presenting desirable compatibility with commonly used fluorescence equipment. Polysaccharide AAG-FTSC derivatives exhibited rather low levels of cytotoxicity against rat thymus cells, and the fluorescent labeling procedure had slight impact on their anti-tumor activity. Results indicate that the assay neither introduces discernible cytotoxicity against living cells nor obviously alters the functional activities of polysaccharides, and provides a convenient, highly efficient fluorescent labeling approach for imaging the transport of polysaccharides in living cells.  相似文献   

18.
The kinetics and equilibrium of the reaction between nucleic acids components and the products of formaldehyde interaction with ethanolamine and different amino acids has been studied. These parameters were found to be similar for all the products used. The destabilization of the N-glycosidic bond in deoxyadenosine caused by formaldehyde derivatives of different amines was studied. The rate of the cleavage of the N-glycosidic bond under the action of formaldehyde derivatives of glycine and ethanolamine was found to be 10 times greater than that under the action of formaldehyde derivatives of other amines. It is shown that DNA preparations with different content of adenine can be obtained by adding the product of formaldehyde reaction with glycine to DNA.  相似文献   

19.
Rabbit liver fructose-1,6-bisphosphatase, a tetramer of identical subunits was rapidly and irreversibly inactivated by o-phthalaldehyde at 25 degrees C (pH 7.3). The second-order rate constant for the inactivation was 30 M-1s-1. Fructose-1,6-bisphosphatase was completely protected from inactivation by the substrate--fructose-1,6-diphosphate but not by the allosteric effector--adenosine monophosphate. The absorption spectrum (lambda max 337 nm) and, fluorescence excitation (lambda max 360 nm) and fluorescence emission spectra (lambda max 405 nm) were consistent with the formation of an isoindole derivative in the subunit between a cysteine and a lysine residue about 3A apart. About 4 isoindole groups per mol of the bisphosphatase were formed following complete loss of the phosphatase activity. This suggests that the amino acid residues of the biphosphatase participating in reaction with o-phthalaldehyde more likely reside at or near the active site instead of allosteric site. The molar transition energy of fructose-1,6-bisphosphatase--o-phthalaldehyde adduct was estimated 121 kJ/mol and compares favorably with 127 kJ/mol for the synthetic isoindole, 1-[(beta-hydroxyethyl)thio]-2-(beta-hydroxyethyl) isoindole in hexane. It is, thus, concluded that the cysteine and lysine residues participating in isoindole formation in reaction between fructose-1,6-bisphosphatase and o-phthalaldehyde are located in a hydrophobic environment.  相似文献   

20.
A method for studing the binging of ligands absorbing the light in the region of 350-550 nm to protein is described. The method is based on resonance energy transfer between the fluorescent label covalently bound to the protein and the ligand. The isoindole label, a product of the reaction of the protein with o-phthalaldehyde in the presence of 2-mercaptoethanol, was used as a fluorescent donor. The method was used to determine the binding parameters of a fluorescent probe (a naphthalimide derivative) with human serum albumin. A comparison of the results obtained by the resonance energy and transfer by equilibrium dialysis showed a high accuracy of the resonance energy transfer method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号