首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At salt concentrations of 0.1 mM as well as of 5.0 mM, the 22Na+ absorption capacity of bean (Phaseolus vulgaris L. cv. ‘Brittle Wax’) leaf tissue increased during the period of leaf expansion and decreased rapidly after leaf maturation. The absorption capacity for 86Rb+ and 42K+ was highest in very young leaves and decreased continuously in expanding and in mature leaves. The 86Rb+ absorption capacity of mature leaves was not increased by detopping the plants; this senescence-retarding treatment more than doubled 2Na+ absorption. The absorption of 22Na+ by bean-leaf slices was not enhanced by light, whereas 86Rb+ and 42K+ absorption was much affected. Previously absorbed 86Rb+ and 42K+ were more available for exchange than 22Na+.  相似文献   

2.
Three cultivars of sugar beet (Beta vulgaris L.), which are sensitive to aluminium (Al) in the order Primahill > Monohill > Regina, were grown in water culture for 2 weeks. Nutrients were supplied at 15% increase of amounts daily, corresponding to the nutrient demand for maximal growth. The 2.4-dinitrophenol (DNP)-sensitive (metabolic) and DNP-insensitive (non-metabolic) uptake of aluminium, phosphate. 45Ca2+ and K+(86Rb+) in roots were measured as well as transport to shoots of intact plants. All 3 cultivars absorbed more aluminium if DNP was present during the aluminium treatment than in its absence. It is suggested that sugar beets are able to extrude aluminium activity or that they possess an active mechanism to keep Al outside the cell. The presence of Al in the medium during the 1-h experiment affected the metabolic and non-metabolic fluxes of 45Ca2+ and K+(86Rb+) in different ways. In the presence of DNP, the influx of both 45Ca2+ and K+(86Rb+) and the efflux of 45Ca2+ were inhibited by Al in a competitive way. At inhibition of 45Ca2+ influx, 2 Al ions are probably bound per Ca2+ uptake site in cv. Regina (Al-tolerant), but in cvs Primahill and Monohill only one Al ion is bound (more Al sensitive). Aluminium competitively inhibited the active efflux of 45Ca2+ (absence of DNP) in almost the same way in the 3 cultivars. In contrast, aluminium stimulated the influx of K+(86Rb+) in cvs Primahill, Monohill and Regina in the absence of DNP. Thus, the Al effects on active and passive K+(86Rb+) influx are different. The total influx of K+(86Rb+) increased in the presence of Al and might be connected to an active exclusion of Al. Regina is the least Al-sensitive cultivar, probably because Al interferes less with the Ca2+ fluxes and because this cultivar actively excludes phosphate in the presence of Al. Thus Al-phosphate precipitation within the plant could be avoided.  相似文献   

3.
Steady state kinetics were used to examine the influence of Cd2+ both on K+ stimulation of a membrane-bound ATPase from sugar beet roots (Beta vulgaris L. cv. Monohill) and on K+(86Rb+) uptake in intact or excised beet roots. The in vitro effect of Cd2+ was studied both on a 12000–25000 g root fraction of the (Na++K++Mg2+)ATPase and on the ATPase when further purified by an aqueous polymer two-phase system. The observed data can be summarized as follows: 1) Cd2+ at high concentrations (>100 μM) inhibits the MgATPase activity in a competitive way, probably by forming a complex with ATP. 2) Cd2+ at concentrations <100 μM inhibits the specific K+ activation at both high and low affinity sites for K+. The inhibition pattern appears to be the same in the two ATPase preparations of different purity. In the presence of the substrate MgATP, and at K+ <5 mM, the inhibition by Cd2+ with respect to K+ is uncompetitive. In the presence of MgATP and K+ >10 μM, the inhibition by Cd2+ is competitive. 3) At the low concentrations of K+, Cd2+ also inhibits the 2,4-dinitrophenol(DNP)-sensitive (metabolic) K+(86Rb+) uptake uncompetitively both in excised roots and in roots of intact plants. 4) The DNP-insensitive (non metabolic) K+(86Rb+) uptake is little influenced by Cd2+. As Cd2+ inhibits the metabolic uptake of K+(86Rb+) and the K+ activation of the ATPase in the same way at low concentrations of K+, the same binding site is probably involved. Therefore, under field conditions, when the concentration of K+ is low, the presence of Cd2+ could be disadvantageous.  相似文献   

4.
86Rb+ uptake by yeast was not only stimulated by Rb+ or K+ but also by Na+. The uptake of 22Na+ was enhanced by both Rb+ and K+, but not by Na+, which was inhibitory at all concentrations applied. Inhibition of 22Na+ uptake by inactive Na+ occurred in two phases: one phase refers to inhibition at low Na+ concentrations and the other to inhibition at high Na+ concentrations. Our results can be qualitatively described by a two-site transport mechanism, having two cation binding sites, which must be occupied with monovalent cations before transport can occur.  相似文献   

5.
The classic compartment analysis of ion efflux from roots is often applied with the assumption that there is a system of 3 compartments in series. However, complex ion transport across the root tissues, as well as influences from the shoot, may complicate the picture. The present experiments were performed to study the immediate effects that excision of the shoot before the experiment exerts on the efflux of Rb+(86Rb+) and of K+(86Rb+) from 9-day-old roots of plants of barley (Hordeum vulgare L. cv. Salve). The efflux from high K+ and low K+ roots of intact and detopped plants were compared. After excision of the shoot of high K+ plants, a marked increase in efflux was observed after 2.5 h with a maximum at about 7 h. The increase in efflux was seen as a peak in plots of efflux versus time. Excision of the shoot from low K+ roots did not give rise to a consistent increase in efflux. Regular K+ ion efflux curves were observed from roots of intact plants of high or low K+ status. Furthermore, after a pulse treatment of 9-day-old roots of intact plants of high or low K+ status with a solution containing Rb+(86Rb+), the Rb+(86Rb+) transport to the shoots was not reduced during the following 3 h in unlabelled solution. It is suggested that both the peak appearing in the efflux plots and the maintained tracer transport to the shoots after transfer of the roots to an unlabelled solution indicate the existence of a K+/Rb+ transport system in the symplasm of the roots that has only a slow exchange with the bulk cytoplasm and vacuoles.  相似文献   

6.
Spergularia marina (L.) Griseb. is. a rapidly growing, annual, coastal halophyte. Because of its small size, it is suitable for isotope studies of ion transport well beyond the seedling stage. The purpose of this report is to establish the similarities and differences between 22Na+ and 42K+ uptake in S. marina and in more commonly used mesophytic crop species. Vegetative plants were used 18 days after transfer to solution culture. Plants were grown either on Na+-free medium or on 0.2 × sea water. 22Na+ uptake was linear with time for several hours. The rate was relatively insensitive to external concentration between 1 and 180 mol Na+ m?3, particularly in Na+-free plants. Transport to the shoot accounted for 40 to 70% of the total uptake, dependent on salinity but largely independent of time. 42K+ uptake decreased with increasing salinity in Na+-free plants and increased in 0.2 × sea water plants. Both uptake and transport to the shoot were non-linear with time, upward concavity suggesting recovery from a manipulative and/or osmotic injury. Steady state root contents were compared with predicted contents based on cortical cell electrical potentials using the Nernst equation. Reasonable agreement was found in all cases except Na+ content of 0.2 × sea water plants, in which active efflux was indicated. Uptake studies conducted in the presence of chemical modifiers (dicyclohexylcarbodiimide, dinitrophenol and fusicoccin) showed responses of 42K+ uptake as expected from studies on agronomic species, and implied the presence of a similar active uptake here despite the appearance of equilibrium. Active Na+ uptake was suggested at low Na+ levels. We conclude that S. marina is a promising experimental system combining the rapid nutrient acquisition strategy of agionomically important annuals with a high degree of salt tolerance.  相似文献   

7.
Two ionophores, monensin and salinomycin, increased total cell Na+ and ouabain-sensitive 86Rb+ uptake in cultures of smooth muscle cells from rat aorta. Monensin was used to produced graded increases in cell Na+ in order to assess the Na+ dependence of the Na+/K+ pump in the intact cell. The relationship between internal Na+ and ouabain-sensitive 86Rb+ uptake was hyperbolic (K1Na = 3 mM). Monensin did not stimulate 86Rb+ uptake in the absence of external Na+. Loading the cells with Na+ by exposing cultures to a K+-free medium for 3 hr maximally increased cell Na+ and ouabain-sensitive 86Rb+ uptake to the same extent as monensin. Total cell Na+ and pump activity in monensin-treated cells returned to the initial values after removing the ionophore. Monensin was then able to increase total cell Na+ and ouabain-sensitive 86Rb+ uptake to the same extent as the initial treatment with the ionophore.  相似文献   

8.
Isolated muscle cells from adult rat heart have been used to study the relationship between myocardial glucose transport and the activity of the Na+/K+ pump. 86Rb+-uptake by cardiac cells was found to be linear up to 2 min with a steady-state reached by 40–60 min, and was used to monitor the activity of the Na+/K+ pump. Ouabain (10?3 mol/I) inhibited the steady-state uptake of 86Rb+ by more than 90%. Both, the ouabain-sensitive and ouabain-insensitive 86Rb+-uptake by cardiac cells were found to be unaffected by insulin treatment under conditions where a significant stimulation of 3-O-methylglucose transport occurred. 86Rb+-uptake was markedly reduced by the presence of calcium and/or magnesium, but remained unresponsive towards insulin treatment. Inhibition of the Na+/K+ pump activity by ouabain and a concomitant shift in the intracellular Na+:K+ ratio did not affect basal or insulin stimulated rates of 3-O-methylglucose transport in cardiac myocytes. The data argue against a functional relationship between the myocardial Na+/K+ pump and the glucose transport system.  相似文献   

9.
The influx of Rb+ into the roots of two barley varieties (Hordeum vulgare L. cv. Salve and cv. Ingrid) from a K+-free 86Rb-labelled nutrient solution with 2.0 mM Rb+, was checked at intervals from day 6 to day 18. The control plants were continuously grown in complete nutrient solution containing 5.0 mM K+, while two other groups of plants were grown in K+-free nutrient solution starting on day 6 and between day 6 and day 9, respectively. The pattern of Rb+ influx was similar for both varieties, although their efficiencies in absorbing Rb+ were different. The relationship between Rb+ influx and K+ concentration of the root could be interpreted in terms of negative feedback through allosteric control of uptake across the plasmalemma of the root cells. Hill plots were bimodal, but in the opposite direction. The Hill coefficients, reflecting the minimum number of interacting allosteric binding sites for K+ (Rb+), were low (≤–3.0). It is discussed whether the threshold value, that is the breaking point in the Hill plot, is indicative of a changed efficiency of transporting units for K+ (Rb+) transport to the xylem. Moreover, feedback regulation might be involved in transport of K+ between root and shoot. The variation in K+ concentrations in the roots and shoots of control plants were cyclic but in phase opposition despite an exponential growth. The average K+ concentration varied only slightly with age.  相似文献   

10.
Kinetic studies of a dithiothreitol treated membrane ATPase fraction from sugar beet roots led to the following conclusions: 1) In the presence of MgATP, Na+ and K+ stimulate the ATPase activity in different ways following simple Michaelis-Menten kinetics. Thus separate sites for Na+ and K+ are suggested. 2) In the absence of K+, Na+ acts as an uncompetitive modifier raising the apparent Km and Vmax for MgATP. 3) In the absence of Na+, K+ activates non-competitively with respect to MgATP. Thus K+ increases Vmax but does not affect the apparent affinity constant. 4) K+ and Na+ double the rate constants. 5) In the presence of Na+ or K+, Mg2+ in excess acts as a weak inhibitor to Na+ and/or K+ activity. 6) The temperature-activity dependence in the 5–40°C interval shows biphasic Arrhenius plots with the transition point between 15–18°C. The activation energy is lowered at temperatures > 18°C.  相似文献   

11.
The stimulation of dicotyledonous leaf growth by light depends on increased H+ efflux, to acidify and loosen the cell walls, and is enhanced by K+ uptake. The role of K+ is generally considered to be osmotic for turgor maintenance. In coleoptiles, auxin‐induced cell elongation and wall acidification depend on K+ uptake through tetraethylammonium (TEA)‐sensitive channels (Claussen et al., Planta 201, 227–234, 1997), and auxin stimulates the expression of inward‐rectifying K+ channels ( Philippar et al. 1999) . The role of K+ in growing, leaf mesophyll cells has been investigated in the present study by measuring the consequences of blocking K+ uptake on several growth‐related processes, including solute accumulation, apoplast acidification, and membrane polarization. The results show that light‐stimulated growth and wall acidification of young tobacco leaves is dependent on K+ uptake. Light‐stimulated growth is enhanced three‐fold over dark levels with increasing external K+, and this effect is blocked by the K+ channel blockers, TEA, Ba++ and Cs+. Incubation in 10 mm TEA reduced light‐stimulated growth and K+ uptake by 85%, and completely inhibited light‐stimulated wall acidification and membrane polarization. Although K+ uptake is significantly reduced in the presence of TEA, solute accumulation is increased. We suggest that the primary role of K+ in light‐stimulated leaf growth is to provide electrical counterbalance to H+ efflux, rather than to contribute to solute accumulation and turgor maintenance.  相似文献   

12.
It has been shown that addition of phosphate to phosphate deficient yeast gives rise to an immediate increase in the rate of Na+ uptake and an immediate decrease in the rate of Rb+ uptake. In addition, phosphate uptake is enhanced specifically by Na ions presumably by a process with a very high affinity for phosphate with a Km of about 2 × 10−6M at pH 7.2, whereas the Km for phosphate uptake of the Na+ independent process amounts to 1.3 × 10−4M.  相似文献   

13.
Prostaglandin E2 (PGE2) is quantitatively one of the major prostaglandins synthesized in mammalian brain, and there is evidence that it facilitates seizures and neuronal death. However, little is known about the molecular mechanisms involved in such excitatory effects. Na+,K+‐ATPase is a membrane protein which plays a key role in electrolyte homeostasis maintenance and, therefore, regulates neuronal excitability. In this study, we tested the hypothesis that PGE2 decreases Na+,K+‐ATPase activity, in order to shed some light on the mechanisms underlying the excitatory action of PGE2. Na+,K+‐ATPase activity was determined by assessing ouabain‐sensitive ATP hydrolysis. We found that incubation of adult rat hippocampal slices with PGE2 (0.1–10 μM) for 30 min decreased Na+,K+‐ATPase activity in a concentration‐dependent manner. However, PGE2 did not alter Na+,K+‐ATPase activity if added to hippocampal homogenates. The inhibitory effect of PGE2 on Na+,K+‐ATPase activity was not related to a decrease in the total or plasma membrane immunocontent of the catalytic α subunit of Na+,K+‐ATPase. We found that the inhibitory effect of PGE2 (1 μM) on Na+,K+‐ATPase activity was receptor‐mediated, as incubation with selective antagonists for EP1 (SC‐19220, 10 μM), EP3 (L‐826266, 1 μM) or EP4 (L‐161982, 1 μM) receptors prevented the PGE2‐induced decrease of Na+,K+‐ATPase activity. On the other hand, incubation with the selective EP2 agonist (butaprost, 0.1–10 μM) increased enzyme activity per se in a concentration‐dependent manner, but did not prevent the inhibitory effect of PGE2. Incubation with a protein kinase A (PKA) inhibitor (H‐89, 1 μM) and a protein kinase C (PKC) inhibitor (GF‐109203X, 300 nM) also prevented PGE2‐induced decrease of Na+,K+‐ATPase activity. Accordingly, PGE2 increased phosphorylation of Ser943 at the α subunit, a critical residue for regulation of enzyme activity. Importantly, we also found that PGE2 decreases Na+,K+‐ATPase activity in vivo. The results presented here imply Na+,K+‐ATPase as a target for PGE2‐mediated signaling, which may underlie PGE2‐induced increase of brain excitability.  相似文献   

14.
Ice crystal formation temperature was determined in the region of the crown in one group of 7-day-old intact unhardened high-salt plants of winter wheat (Triticum aestivum L. cv. Weibulls Starke II) with TA (Thermal Analysis) and DTA (Differential Thermal Analysis) methods. After exposure of another group of plants, grown for the first 7 days in the same way as the first group, to various sub-zero temperatures (-1 to 5°C), influx in roots of Rb+(86Rb+) and Ca2+(45Ca2+) and contents of K+ and Ca2+ were determined at intervals during 7 days of recovery. Ice crystal formation in the crown tissue was probably extracellular and took place at about -4°C. There was a large loss of K+ from the roots after treatment at sub-zero temperatures. This loss increased as the temperature of the sub-zero treatment decreased. During recovery, roots of plants exposed to -1, -2 and -3°C gradually reabsorbed K+. Reabsorption of K+ in roots of plants exposed to -4°C was greatly impaired. Rb+ influx decreased and Ca2+ influx increased after sub-zero temperature treatments of the plants. Active Rb+ influx mechanisms and active extrusion of Ca2+ were impaired or irreversibly damaged by the exposure. While Rb+ influx mechanisms were apparently repaired during recovery in plants exposed to temperatures down to -3°C, Ca2+ extrusion mechanisms were not. The temperature for ice crystal formation in the region of the crown tissue coincides with the temperature at which the plants lost the ability to reabsorb K+ and to repair Rb+ influx mechanisms during the recovery period. Plants were lethally damaged at temperatures below ?4°C.  相似文献   

15.
Spring wheat (Triticum aestivum L. cv. Svenno), oat (Avena sativa L. cv. Brighton) and glasshouse cucumber (Cucumis sativus L. cv. Bestseller F1) were cultured for a week after germination on complete nutrient solutions of three different dilutions (1, 25 and 50% of the full strength medium). K+(86Rb) and 45Ca were present during the whole culture period. Relative humidity (RH) was 50% except during the last day, when half the material was transferred to 90% RH. Efflux of labelled ions was then followed during eight hours on unlabelled solutions of the same composition as before, and at both 50% and 90% RH in the atmosphere. – Uptake of K+(86Rb) during growth tended to be saturated in the 25% medium. Contrariwise, the level of Ca2+ in the roots increased continuously with strength of the medium. At low concentrations cucumber roots were higher in Ca2+ than roots of oat or wheat, whereas all three species showed similar levels of Ca2+ in 50% medium. – At the lowest ionic strength, smooth efflux curves were obtained that could be resolved according to the three-compartment theory. At higher ionic strength, irregularities were observed, and more for Ca2+ than for K+; but for practical purposes compartment analysis with the same time constants could be applied as for the lowest concentration. – Discrimination between K+ and Rb+ differed between the roots, but not much between the shoots of different species. The roots of oat and wheat took up Rb+ preferentially over K+ in the 25% and 50% media; whereas K+ was preferred over Rb+ or little discrimination made in 1% medium and for cucumber. The shoots generally showed less discrimination than the roots. The main variability in discrimination between K+ and Rb+ thus appears to be localized in the tonoplasts of the roots cells. – Low RH around the shoots increased efflux of K+(86Rb) from the cytoplasm and vacuoles of the root cells as compared to the efflux at high RH. DNP (2,4-dinitrophenol) in the medium had the same effect as high RH around the shoots. The signal system that must exist between shoots and roots is discussed as a response to “drought” conditions. In relation to investigations of others, it is assumed that the effect of DNP may indicate that part of the chain between roots and shoots consists of metabolically influenced sites, whose output is influenced by the rate of water transport.  相似文献   

16.
A microsomal (Na++ K++ Mg2+)ATPase preparation from sugar beet roots was used. The activation by simultaneous addition of Na+ and K+ at different levels was examined in terms of steady state kinetics. The observed data can be summarized in the following way: 1. The apparent affinity between the enzyme and the substrate MgATP depends on the ratio between Na+ and K+. At low Na+ concentration (below 5 mM), the apparent Km decreases with increasing concentrations of K+ (1–20 mM). At 5 mM Na+, the K+ level does not change the apparent Km, while at Na+ levels above 10 mM, the apparent Km between enzyme and substrate increases with increasing concentration of K+. 2. When the MgATP concentration is kept constant, homotropic cooperativity (concerning one type of ligand) and heterotropic cooperativity (concerning different types of ligands) exist in the activation by Na+ and K+. The Na+ binding is cooperative with different Km values and Hill coefficients (n) in the presence of low and high concentration of K+. At low Na+ level (< 5 mM). a negative cooperativity exists for Na+ (nNa < 1) which is more pronounced in the presence of high [K+]. When the concentration of Na+ is raised the negative cooperativity disappears and turns into a positive one (nNa > 1). Only K+ binding in the presence of low [Na+] shows cooperativity with a Hill coefficient that reflects changes from negative to positive homotropic cooperativity with increasing concentrations of K+ (nK < 1 → nK > 1). In the presence of [Na+] > 10 mM, the changes in nk are insignificant. 3. A model is proposed in which one or two different K sites and one or two Na sites control the catalytic activity, with multiple interactions between Na+, K+ and MgATP. 4. In the presence of Na+ (< 10 mM), K+ is probably bound to two K sites, one of which translocates K+ through the membrane by an antiport Na+/K+ mechanism. This could be connected with an elevated K+ uptake in the presence of Na+ and could therefore explain some field properties of sugar beets.  相似文献   

17.
Interactive effects of K+ and N (principally NH4+) on plant growth and ion uptake were investigated using hydroponically grown rice (Oryza sativa L. cv. M202) seedlings by varying the availability of NH4+ or NO3? and K+ during an 18d growth period, a 3d pretreatment period and during flux measurements. Plants grew best in media containing 100 mmol m?3 NH4+ and 200mmolm?3 K+ (N100/K200), followed by N2/K200 < N100/K2 < N2/K2. 86Rb+(K+) fluxes were increased by exposure to N during the 18 d growth period and the 3 d of pretreatment, but decreased by the presence of NH4+ during flux measurements. This inhibition was a function of prior N/K provision and the [NH4+]0 present during flux determinations. NH4+ was least inhibitory to 86Rb+(K+) influx in high-N/low-K plants. Pretreatments with K+ failed to stimulate NH4+ uptake, and the presence of K+ in the uptake solutions reduced NH4+ fluxes only in high-N/low-K plants.  相似文献   

18.
Rat osteoblatoma cells (ROS 23) were subjected in culture to a physiologic, intermittent, compressive force. The mechanical perturbation enhanced the activity of ornithine decarboxylase by 60%. Investigation of the mechanism of enzyme activation revealed an increase in ouabain inhibitable 86Rb+ uptake, indicating an elevated Na+, K+ ATPase activity. Ouabain (1 μM) reduced ornithine decarboxylase activity by 75% in control cultures. This inhibition was partially overcome by intermittent compression. It appears that a functioning Na+, K+ ATPase is essential for the maintenance of ornithine decarboxylase activity and that activation of Na+, K+ ATPase may be associated with the trophic effects of mechanical stimuli in these cells.  相似文献   

19.
Long-term effects of 1-naphtaleneacetic acid (NAA), benzyladenine (BA), gibberellic acid (GA3), abscisic acid (ABA) and ethylene on K+ levels, K+ uptake and translocation to the shoot were studied in young wheat plants (Triticum aesticum L. cv. Martonvásári-8) grown at different K+ supplies. Na+ levels and K+/Na+ selectivity were also investigated. Both in shoots and roots, NAA, BA and ABA decreased K+ and Na+ levels more effectively in high-K+ plants than in low-K+ plants. GA, and ethylene did not influence K+ and Na+ levels. K+/Na+ selectivity in roots of low-K+ plants was increased in favour of K+ by BA, NAA and to a lesser extent by ABA. In high-K+ plants only BA increased the K+/Na+ ratio, whereas the effects of the other hormones were the opposite (NAA) or less pronounced (ABA). K+(86Rb) uptake was inhibited by NAA and BA in low-K+ plants but not in high-K+ plants. K+(86Rb) uptake was inhibited throughout by 10 μM ABA. K+(86Rb) translocation to the shoot was influenced by the hormones similarly to the uptake patterns, with the exception of ABA, which inhibited translocation in low-K+ plants but not in high-K+ plants. The results show that hormonal effects may quantitatively and qualitatively be modified by K+ levels in the plant and that internal K+ concentration may play a role in the mechanisms regulating the effects of NAA, BA and ABA but probably not in those of GA3 or ethylene.  相似文献   

20.
The effects of cadmium and lead on the internal concentrations of Ca2+ and K+, as well as on the uptake and translocation of K(86Rb+) were studied in winter wheat (Triticum aestivum L. a. MV-8) grown hydroponically at 2 levels of K+ (100 uM and 10 mM). Cd2+ and Pb2+ were applied in the nutrient solution in the range of 0.3 to 1000 u.M. Growth was more severely inhibited by Cd2+ and in the high-K+ plants as compared to Pbz+ and low-K+ plants. Ions of both heavy metals accumulated in the roots and shoots, but the K+ status influenced their levels. Ca2+ accumulation was increased by low concentrations of Cd2+ mainly in low-K+ shoots, whereas it was less influenced by Pb2+. The distribution of Cd2+ and Ca2+ in the plant and in the growth media indicated high selectivity for Cd2+ in the root uptake, while Ca2+ was preferred in the radial and/or xylem transport. Cd2+ strongly inhibited net K+ accumulation in high-K+ plants but caused stimulation at low K+ supply. In contrast, the metabolis-dependent influx of K+(86Rb+) was inhibited in low-K+ plants, while the passive influx in high-K+ plants was stimulated. Translocation of K+ from the roots to the shoots was inhibited by Cd2+ but less influenced in Pb2+-treated plants. It is concluded that the effects of heavy metals depend upon the K+-status of the plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号