首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Beta-keratins are responsible for the mechanical resistance of scales in reptiles. In a scaleless crotalus snake (Crotalus atrox), large areas of the skin are completely devoid of scales, and the skin appears delicate and wrinkled. The epidermis of this snake has been assessed for the presence of beta-keratin by immunocytochemistry and immunoblotting using an antibody against chicken scale beta-keratin. This antibody recognizes beta-keratins in normal snake scales with molecular weights of 15-18 kDa and isoelectric points at 6.8, 7.5, 8.3 and 9.4. This indicates that beta-keratins of the stratum corneum are mainly basic proteins, so may interact with cytokeratins of the epidermis, most of which appear acidic (isoelectric points 4.5-5.5). A beta-layer and beta-keratin immunoreactivity are completely absent in moults of the scaleless mutant, and the corneous layer comprises a multi-layered alpha-layer covered by a flat oberhautchen. In conclusion, the present study shows that a lack of beta-keratins is correlated with the loss of scales and mechanical protection in the skin of this mutant snake.  相似文献   

2.
The ability of the germinative cell population of scutate scale epidermis to continue to generate cells that undergo their appendage-specific differentiation (beta stratum formation), when associated with foreign dermis, was examined. Tissue recombination experiments were carried out which placed anterior metatarsal epidermis (scutate scale forming region) from normal 15-day chick embryos with either the anterior metatarsal dermis from 15-day scaleless (sc/sc) embryos or the dermis from the metatarsal footpad (reticulate scale forming region) of 15-day normal embryos. Neither of these dermal tissues are able to induce beta stratum formation in the simple ectodermal epithelium of the chorion, however, the footpad dermis develops an appendage-specific pattern during morphogenesis of the reticulate scales, while the sc/sc dermis does not. Morphological and immunohistological criteria were used to assess appendage-specific epidermal differentiation in these recombinants. The results show that the germinative cell population of the 15-day scutate scale epidermis is committed to generating suprabasal cells that follow their appendage-specific pathways of histogenesis and terminal differentiation. Of significance is the observation that the expression of this determined state occurred only when the epidermis differentiated in association with the footpad dermis, not when it was associated with the sc/sc dermis. The consistent positioning of the newly generated beta strata to the apical regions of individual reticulate-like appendages demonstrates that the dermal cues necessary for terminal epidermal differentiation are present in a reticulate scale pattern. The observation that beta stratum formation is completely missing in the determined scutate scale epidermis when associated with the sc/sc dermis adds to our understanding of the sc/sc defect. The present data support the conclusion of earlier studies that the anterior metatarsal dermis from 15-day sc/sc embryos lacks the ability to induce beta stratum formation in a foreign epithelium. In addition, these observations evoke the hypothesis that the sc/sc dermis either lacks the cues (generated during scutate and reticulate scale morphogenesis) necessary for terminal differentiation of the determined scutate scale epidermis or inhibits the generation of a beta stratum.  相似文献   

3.
Unlike normal scutate scales whose outer and inner epidermal surfaces elaborate β (β-keratins) and α (α-keratins) strata, respectively, the scaleless mutant's anterior metatarsal epidermis remains flat and elaborates only an α stratum. Reciprocal epidermal-dermal recombinations of presumptive scale tissues from normal and mutant embryos have demonstrated that the scaleless defect is expressed only by the epidermis. In fact, the scaleless anterior metatarsal epidermis is unable to undergo placode formation. More recently, it has been determined that the absence of epidermal placode morphogenesis into a definitive scale ridge actually results in the establishment of a scale dermis which is incapable of inducing the outer and inner epidermal surfaces of scutate scales. Can the initial genetic defect in the scaleless anterior metatarsal epidermis be overcome by replacing the defective dermis with a normal scutate scale dermis, i.e., a dermis with scale ridges already present? Or, are the genes involved in the production of a β stratum regulated by events directly associated with morphogenesis of the epidermal placode? In the present study, we combined scaleless anterior metatarsal epidermis (stages 36 to 42) with normal scutate scale dermis (stage 40, 41, or 42) old enough to have acquired its scutate scale-inducing ability. After 7 days of growth as chorioallantoic membrane grafts, we observed grossly and histologically, typical scutate scales in these recombinant grafts. Electron microscopic and electrophoretic analyses have verified that these recombinant scales are true scutate scales. The scaleless mutation, known to be expressed initially by the anterior metatarsal epidermis, can be overcome by exposing this epidermis to appropriate inductive cues, i.e., cues that direct the differentiation of the outer and inner epidermal surfaces of the scutate scales and the production of specific structural proteins. We have determined that the time between stages 38 and 39 is the critical period during which the normal scutate scale dermis acquires these inductive abilities.  相似文献   

4.
Epidermal-dermal interactions influence morphogenesis and expression of the beta keratin gene family during development of scales in the embryonic chick. The underlying mechanisms by which these interactions control beta keratin expression are not understood. However, the present study of beta keratin gene expression during avian epidermal differentiation contributes new information with which to investigate the role of tissue interactions in this process. Using beta keratin-specific synthetic oligonucleotide probe, beta keratin mRNA was hybrid-selected from total poly A+ RNA of scutate scales. Seven beta keratin polypeptides were translated in vitro and could be identified by their positions in two-dimensional gels among the detergent-insoluble extracts of scutate scale epidermis. In vivo phosphorylation studies suggested that an additional three beta keratin polypeptides were present as phosphoproteins. The temporal appearance of beta keratin mRNA and the corresponding polypeptides was followed during scutate scale development. Polyclonal antiserum made against two of the beta keratin polypeptides was used for immunohistochemical and immunogold electron-microscopic analysis of beta keratin tissue distribution. Immunological reactivity was observed specifically along the outer scale surface in epidermal cells above the stratum germinativum. Immunogold beads were localized on 3-nm filament bundles. In situ hybridization with a beta keratin-specific RNA probe demonstrated that mRNA accumulated in the same regional manner as the polypeptides. This selective expression of beta keratin genes in specific regions of the developing scutate scale suggests that epidermal-dermal interactions provide not only for morphological events, but also for control of complex patterns of histogenesis and biochemical differentiation.  相似文献   

5.
Morphogenesis of the anterior metatarsal skin (scutate scale region), from 9.5 to 12 days of development, results in the formation of orderly patterned scale ridges. It is after the initial formation of the Definitive Scale Ridge that the characteristic outer and inner epidermal surfaces differentiate. The hard, plate-like beta stratum, with its unique beta keratins, characterizes the epidermis of the outer surface, while the epidermis of the inner surface elaborates an alpha stratum. The anterior metatarsal region of the scaleless mutant does not undergo scale morphogenesis. Therefore, scale ridges do not form nor do the outer and inner epidermal surfaces with their characteristic beta and alpha strata. We have found that the extracellular matrix molecule, tenascin, first appears in the scutate scale dermis at 12 days of development when the scale ridge is established. Tenascin is found in the dermis only under the scale ridge and is not associated with the dermal-epidermal junction. Tenascin is not found in scaleless anterior metatarsal dermis at this time. As outgrowth of the Definitive Scale Ridge takes place, tenascin distribution correlates closely with the formation of the outer epidermal surface of each scale ridge. By 16 days of development tenascin is also found in close association with the dermal-epidermal junction. Tenascin does not appear in scaleless anterior metatarsal dermis until 16 days of development and then it is randomly and sparsely distributed at the dermal-epidermal junction. Tenascin's initial appearance and pattern of distribution in the scutate scale dermis and its abnormal expression in the scaleless dermis suggest that morphogenesis plays a significant role in regulation of its expression.  相似文献   

6.
Alibardi L  Toni M 《Tissue & cell》2005,37(6):423-433
The distribution and molecular weight of epidermal proteins of gecko lizards have been studied by ultrastructural, autoradiographic, and immunological methods. Setae of the climbing digital pads are cross-reactive to antibodies directed against a chick scutate scale beta-keratin but not against feather beta-keratin. Cross-reactivity for mammalian loricrin, sciellin, filaggrin, and transglutaminase are present in alpha-keratogenic layers of gecko epidermis. Alpha-keratins have a molecular weight in the range 40-58 kDa. Loricrin cross-reactive bands have molecular weights of 42, 50, and 58 kDa. Bands for filaggrin-like protein are found at 35 and 42 kDa, bands for sciellin are found at 40-45 and 50-55 kDa, and bands for transglutaminase are seen at 48-50 and 60 kDa. The specific role of these proteins remains to be elucidated. After injection of tritiated histidine, the tracer is incorporated into keratin and in setae. Tritiated proline labels the developing setae of the oberhautchen and beta layers, and proline-labeled proteins (beta-keratins) of 10-14, 16-18, 22-24 and 32-35 kDa are extracted from the epidermis. In whole epidermal extract (that includes the epidermis with corneous layer and the setae of digital pads), beta-keratins of low-molecular weight (10, 14-16, and 18-19 kDa) are prevalent over those at higher molecular weight (34 and 38 kDa). In contrast, in shed epidermis of body scales (made of corneous layer only while setae were not collected), higher molecular weight beta-keratins are present (25-27 and 30-34 kDa). This suggests that a proportion of the small beta-keratins present in the epidermis of geckos derive from the differentiating beta layer of scales and from the setae of digital pads. Neither small nor large beta-keratins of gecko epidermis cross-react with an antibody specifically directed against the feather beta-keratin of 10-12 kDa. This result shows that the 10 and 14-16 kDa beta-keratins of gecko (lepidosaurian) have a different composition than the 10-12 kDa beta-keratin of feather (archosaurian). It is suggested that the smaller beta-keratins in both lineages of sauropsids were selected during evolution in order to build elongated bundles of keratin filaments to make elongated cells. Larger beta-keratins in reptilian scales produce keratin aggregations with no orientation, used for mechanical protection.  相似文献   

7.
Lizard scales are composed of alpha-(cyto-) keratins and beta-keratins. The characterization of the molecular weight and isoelectric point (pI) of alpha- and beta-keratins of lizard epidermis (Podarcis sicula) has been done by using two-dimensional electrophoresis, immunoblotting, and immunocytochemistry. Antibodies against cytokeratins, against a chicken scale beta-keratin or against lizard beta-keratin bands of 15-16 kDa, have been used to recognize alpha- and beta-keratins. Acid and basic cytokeratins of 42-67 kDa show a pI from 5.0 to 8.9. This indicates the presence of specific keratins for the formation of the stratum corneum. Main protein spots of beta-keratin at 15-17 kDa, and pI at 8.5, 8.2, and 6.7, and one spot at 10 kDa and pI at 7.3 were recognized. Therefore, beta-keratins are mainly basic proteins, and are used for the formation of the hard corneous layer of the epidermis. Ultrastructural immunocytochemistry confirms that beta-keratin is packed into large and dense bundles of beta-keratin cells of lizard epidermis. The use of a probe against a lizard beta-keratin in situ-hybridization studies confirms that the mRNA for beta-keratins is present in beta-cells and is localized around or even associated with beta-keratin filaments.  相似文献   

8.
Embryonic induction has been demonstrated in numerous studies, yet the molecular basis for induction still eludes investigators. Components of the extracellular matrix (ECM), cell adhesion molecules (CAM), diffusable factors, as well as direct cell-cell contact, have been implicated in the early induction of avian feathers and scales. Although feathers and scales differ in many aspects, they are similar in that they appear initially as discrete and orderly arranged epidermal placodes. In the case of scutate scales, the cells of the epidermal placode are nonproliferative, while the cells of the interplacode regions are highly proliferative. In this study, I compare the proliferative activity of normal scale cells with that of the epidermal cells from embryos of the scaleless (sc/sc) mutant chicken which does not undergo epidermal placode formation and therefore lacks scutate scales. These results show that prior to the time that placodes would normally form, the proliferative activity of the scaleless epidermal cells is similar to that seen in normal epidermal cells. Likewise, the cessation of cell proliferation seen in normal placodes occurs in the epidermal basal cells of the sc/sc shank. It is the high rate of proliferation seen for the epidermal basal cells of the normal interplacode region and the outer surface of the scale ridge that never develops in the sc/sc epidermal cells.  相似文献   

9.
Epidermal-dermal tissue interactions regulate morphogenesis and tissue-specific keratinization of avian skin appendages. The morphogenesis of scutate scales differs from that of reticulate scales, and the keratin polypeptides of their epidermal surfaces are also different. Do the inductive cues which initiate morphogenesis of these scales also establish the tissue-specific keratin patterns of the epidermis, or does the control of tissue-specific keratinization occur at later stages of development? Unlike feathers, scutate and reticulate scales can be easily separated into their epidermal and dermal components late in development when the major events of morphogenesis have been completed and keratinization will begin. Using a common responding tissue (chorionic epithelium) in combination with scutate and reticulate scale dermises, we find that these embryonic dermises, which have completed morphogenesis, can direct tissue-specific statification and keratinization. In other words, once a scale dermis has acquired its form, through normal morphogenesis, it is no longer able to initiate morphogenesis of that scale, but it can direct tissue-specific stratification and keratinization of a foreign ectodermal epithelium, which itself has not undergone scale morphogenesis.  相似文献   

10.
The polyacrylamide gradient gel electrophoresis (PAGGE) pattern of polypeptides isolated from normal scuttate scale epidermis of 1-week-old chicks was different from that of the anterior shank epidermis from 1-week-old scaleless mutant chicks. The PAGGE patterns of polypeptides isolated from normal and scaleless reticulate scale epidermis (from 1-week-old chicks) differed by only one band, whereas comparison of mutant's scuttate and reticulate patterns showed three band differences. These data are discussed in relation to the action of the scaleless gene on early morphogenesis of the two types of scales.  相似文献   

11.
Reptilian epidermis contains two types of keratin, soft (alpha) and hard (beta). The biosynthesis and molecular weight of beta-keratin during differentiation of lizard epidermis have been studied by autoradiography, immunocytochemistry and immunoblotting. Tritiated proline is mainly incorporated into differentiating and maturing beta-keratin cells with a pattern similar to that observed after immunostaining with a chicken beta-keratin antibody. While the antibody labels a mature form of beta-keratin incorporated in large filaments, the autoradiographic analysis shows that beta-keratin is produced within the first 30 min in ribosomes, and is later packed into large filaments. Also the dermis incorporates high amount of proline for the synthesis of collagen. The skin was separated into epidermis and dermis, which were analyzed separately by protein extraction and electrophoresis. In the epidermal extract proline-labeled proteic bands at 10, 15, 18-20, 42-45, 52-56, 85-90 and 120 kDa appear at 1, 3 and 5 h post-injection. The comparison with the dermal extract shows only the 85-90 and 120 kDa bands, which correspond to collagen. Probably the glycine-rich sequences of collagen present also in beta-keratins are weakly recognized by the beta-1 antibody. Immunoblotting with the beta-keratin antibody identifies proteic bands according to the isolation method. After-saline or urea-thiol extraction bands at 10-15, 18-20, 40, 55 and 62 kDa appear. After extraction and carboxymethylation, weak bands at 10-15, 18-20 and 30-32 kDa are present in some preparations, while in others also bands at 55 and 62 kDa are present. It appears that the lowermost bands at 10-20 kDa are simple beta-keratins, while those at 42-56 kDa are complex or polymeric forms of beta-keratins. The smallest beta-keratins (10-20 kDa) may be early synthesized proteins that are polymerized into larger beta-keratins which are then packed to form larger filaments. Some proline-labeled bands differ from those produced after injection of tritiated histidine. The latter treatment does not show 10-20 kDa labeled proteins, but tends to show bands at 27, 30-33, 40-42 and 50-62 kDa. Histidine-labeled proteins mainly localize in keratohyalin-like granules and dark keratin bundles of clear-oberhautchen layers of lizard epidermis, and their composition is probably different from that of beta-keratin.  相似文献   

12.
The adaptation to land from amphibians to amniotes was accompanied by drastic changes of the integument, some of which might be reconstructed by studying the formation of the stratum corneum during embryogenesis. As the first amniotes were reptiles, the present review focuses on past and recent information on the evolution of reptilian epidermis and the stratum corneum. We aim to generalize the discussion on the evolution of the skin in amniotes. Corneous cell envelopes were absent in fish, and first appeared in adult amphibian epidermis. Stem reptiles evolved a multilayered stratum corneum based on a programmed cell death, intensified the production of matrix proteins (e.g., HRPs), corneous cell envelope proteins (e.g., loricrine-like, sciellin-like, and transglutaminase), and complex lipids to limit water loss. Other proteins were later produced in association to the soft or hairy epidermis in therapsids (e.g., involucrin, profilaggrin-filaggrin, trichohyalin, trichocytic keratins), or to the hard keratin of hairs, quills, horns, claws (e.g., tyrosine-rich, glycine-rich, sulphur-rich matrix proteins). In sauropsids special proteins associated to hard keratinization in scales (e.g., scale beta-keratins, cytokeratin associated proteins) or feathers (feather beta-keratins and HRPs) were originated. The temporal deposition of beta-keratin in lepidosaurian reptiles originated a vertical stratified epidermis and an intraepidermal shedding layer. The evolutions of the horny layer in Therapsids (mammals) and Saurospids (reptiles and birds) are discussed. The study of the molecules involved in the dermo-epidermal interactions in reptilian skin and the molecular biology of epidermal proteins are among the most urgent future areas of research in the biology of reptilian skin.  相似文献   

13.
Beta-keratins form the hard corneous material of reptilian scales. In the present review, the distribution and molecular characteristics of beta-keratins in reptiles are presented. In lepidosaurians immunoreactive, protein bands at 12-18 kDa are generally present with less frequent proteins at higher molecular weight. In chelonians, bands at 13-18 and 22-24 kDa are detected. In crocodilians, bands at 14-20 kDa and weaker bands at 30-32 kDa are seen. Protein bands above 25 kDa are probably polymerized beta-keratins or aggregates. Two-dimensional gel electrophoresis shows that beta-keratins are mainly basic and that acidic-neutral keratins may derive from post-translational modifications. Beta-keratins comprise glycine-proline-rich and cystein-proline-rich proteins of 13-19 kDa. Beta-keratin genes may or may not contain introns and are present in multiple copies with a linear organization as in avian beta-keratin genes. Despite amino acid differences toward N- and C-terminals all beta-keratins share high homology in their central, beta-folded region of 20 amino acids, indicated as core-box. This region is implicated in the formation of beta-keratin filaments of scales, claws, and feathers. The homology of the core-box suggests that these proteins evolved from a progenitor sequence present in the stem of reptiles. Beta-keratins have diversified in their amino acid sequences producing secondary (and tertiary) conformations that suited them for their mechanical role in scales. In birds, a small beta-keratin has allowed the formation of feathers. It is suggested that beta-keratins represent the reptilian counterpart of keratin associated or matrix proteins present in mammalian hairs, claws, and horns.  相似文献   

14.
Turtle scutes are made of hard (beta)-keratins. In order to study size and localization of beta-keratins in turtle shell, we produced a rat polyclonal antiserum against a turtle scute beta-keratin of 13-16 kDa, which allowed the immunolocalization of the protein in the epidermis. In immunoblots the antiserum recognized turtle beta-keratins but showed variable cross-reactivity with lizard, snake, and avian beta-keratins. The turtle antiserum appears less cross-reactive than a chicken scale antiserum (Beta-1). In bidimensional immunoblots, three main protein spots at 15-16 kDa with pI at 7.3, 6.8, 6.4, and an unresolved large spot at 40-45 kDa with pI around 5 were more constantly obtained. The latter may result from the aggregation of the smaller beta-keratin protein. The corneous layer of the carapace and plastron of various species of chelonians appeared immunofluorescent. The ultrastructural immunolocalization showed sparse labeling over beta-keratin filaments of cells of the horny layer of both carapace and plastron. The study for the first time shows that the isolated protein band derived from a component of the beta-keratin filaments of the corneous layer of turtles. This antibody can be used for further studies on beta-keratin expression and sequencing in chelonian shell. No labeling was present over other cell organelles or layers of turtle epidermis and it was absent in non-epidermal cells. The specificity for turtle beta-keratin suggests that the antiserum recognizes some epitope/s specific for chelonians beta-keratins, and that it also variably recognizes other reptilian and avian beta-keratins.  相似文献   

15.
Nucleotide and deduced amino acid sequences of three beta-keratins of Nile crocodile scales are presented. Using 5'- and 3'-RACE analysis, two cDNA sequences of 1 kb (Cr-gptrp-1) and 1.5 kb (Cr-gptrp-2) were determined, corresponding to 17.4 and 19.3 kDa proteins, respectively, and a pI of 8.0. In genomic DNA amplifications, we determined that the 5'-UTR of Cr-gptrp-2 contains an intron of 621 nucleotides. In addition, we isolated a third gene (Cr-gptrp-3) in genomic DNA amplifications that exhibits seven amino acid differences with Cr-gptrp-2. Genomic organization of the sequenced crocodilian beta-keratin genes is similar to avian beta-keratin genes. Deduced proteins are rich in glycine, proline, serine, and tyrosine, and contain cysteines toward the N- and C-terminal regions, likely for the formation of disulfide bonds. Prediction of the secondary structure suggests that the central core box of 20 amino acids contains two beta-strands and has 75-90% identity with chick beta-keratins. Toward the C-terminus, numerous glycine-glycine-tyrosine and glycine-glycine-leucine repeats are present, which may contribute to making crocodile scales hard. In situ hybridization shows expression of beta-keratin genes in differentiating beta-cells of epidermal transitional layers. Phylogenetic analysis of the available archosaurian and lepidosaurian beta-keratins suggests that feather keratins diversified early from nonfeather keratins, deep in archosaur evolution. However, only the complete knowledge of all crocodilian beta-keratins will confirm whether feather keratins have an origin independent of those in bird scales, which preceded the split between birds and crocodiles.  相似文献   

16.
The discovery of several dinosaurs with filamentous integumentary appendages of different morphologies has stimulated models for the evolutionary origin of feathers. In order to understand these models, knowledge of the development of the avian integument must be put into an evolutionary context. Thus, we present a review of avian scale and feather development, which summarizes the morphogenetic events involved, as well as the expression of the beta (beta) keratin multigene family that characterizes the epidermal appendages of reptiles and birds. First we review information on the evolution of the ectodermal epidermis and its beta (beta) keratins. Then we examine the morphogenesis of scutate scales and feathers including studies in which the extraembryonic ectoderm of the chorion is used to examine dermal induction. We also present studies on the scaleless (sc) mutant, and, because of the recent discovery of "four-winged" dinosaurs, we review earlier studies of a chicken strain, Silkie, that expresses ptilopody (pti), "feathered feet." We conclude that the ability of the ectodermal epidermis to generate discrete cell populations capable of forming functional structural elements consisting of specific members of the beta keratin multigene family was a plesiomorphic feature of the archosaurian ancestor of crocodilians and birds. Evidence suggests that the discrete epidermal lineages that make up the embryonic feather filament of extant birds are homologous with similar embryonic lineages of the developing scutate scales of birds and the scales of alligators. We believe that the early expression of conserved signaling modules in the embryonic skin of the avian ancestor led to the early morphogenesis of the embryonic feather filament, with its periderm, sheath, and barb ridge lineages forming the first protofeather. Invagination of the epidermis of the protofeather led to formation of the follicle providing for feather renewal and diversification. The observations that scale formation in birds involves an inhibition of feather formation coupled with observations on the feathered feet of the scaleless (High-line) and Silkie strains support the view that the ancestor of modern birds may have had feathered hind limbs similar to those recently discovered in nonavian dromaeosaurids. And finally, our recent observation on the bristles of the wild turkey beard raises the possibility that similar integumentary appendages may have adorned nonavian dinosaurs, and thus all filamentous integumentary appendages may not be homologous to modern feathers.  相似文献   

17.
Alibardi L  Toni M 《Tissue & cell》2007,39(5):311-323
Crocodilian keratinocytes accumulate keratin and form a corneous cell envelope of which the composition is poorly known. The present immunological study characterizes the molecular weight, isoelectric point (pI) and the protein pattern of alpha- and beta-keratins in the epidermis of crocodilians. Some acidic alpha-keratins of 47-68 kDa are present. Cross-reactive bands for loricrin (70, 66, 55 kDa), sciellin (66, 55-57 kDa), and filaggrin-AE2-positive keratins (67, 55 kDa) are detected while caveolin is absent. These proteins may participate in the formation of the cornified cell membranes, especially in hinge regions among scales. Beta-keratins of 17-20 kDa and of prevalent basic pI (7.0-8.4) are also present. Acidic beta-keratins of 10-16 kDa are scarce and may represent altered forms of the original basic proteins. Crocodilian beta-keratins are not recognized by a lizard beta-keratin antibody (A68B), and by a turtle beta-keratin antibody (A685). This result indicates that these antibodies recognize specific epitopes in different reptiles. Conversely, crocodilian beta-keratins cross-react with the Beta-universal antibody indicating they share a specific 20 amino acid epitope with avian beta-keratins. Although crocodilian beta-keratins are larger proteins than those present in birds our results indicate presence of shared epitopes between avian and crocodilian beta-keratins which give good indication for the future determination of the sequence of these proteins.  相似文献   

18.
Dissociated epidermal cells derived from the backskin of scaleless chick embryos (stage 34 or 35) form larger agglutinates with wheat germ agglutinin (WGA) than epidermal cells from normal embryonic skin. [3H]Acetyl WGA binding to the scaleless cells is twice as great as to normal epidermal cells. Treatment of these cells with concanavalin A (conA) results in equivalent agglutination of both mutant and normal epidermal cells, whereas neither scaleless nor normal epidermal cells are agglutinated by Dolichos biflorus agglutinin (DBA), soybean agglutinin (SBA) or Ulex europeus agglutinin (UEA). This alteration in cell surface carbohydrates may be related to the failure of the scaleless mutant embryonic epidermis to undergo normal morphogenesis.  相似文献   

19.
Scales of lizards contain beta-keratin of poorly known composition. In the present study, a rat polyclonal serum against a lizard beta-keratin of 14-15 kDa has been produced and the relative protein has been immunolocalized in the epidermis. The observations for the first time show that the isolated protein band derives from the extraction of a protein component of the beta-keratin filaments of lizard epidermis. In immunoblots and immunocytochemistry, the antiserum recognizes most lizard beta-keratins, but produces a variable cross-reactivity with snake beta-keratins, and weak or no reactivity with beta-keratins isolated from tuatara, turtles, alligator and birds. In bidimensional immunoblots of lizard epidermis, three main spots at 15-16 kDa with isoelectric point at 7.0, 7.6 and 8.0, and an unresolved large spot at 29-30 kDa and with pI at 7.5-8.0, are obtained, may be derived from the aggregation of smaller beta-keratin proteins. The ultrastructural immunolocalization with the antibody against lizard beta-keratin shows that only small and large beta-keratin filaments of beta-cells of lizard epidermis are labeled. Keratin bundles in oberhautchen cells are less immunolabeled. Beta-keratin is rapidly polymerized into beta-packets that merge into larger beta-keratin filaments. No labeling is present over other cell organelles or cell layers of lizard epidermis, and is absent in non-epidermal cells. The antiserum recognizes epitope(s) characteristics for lizard beta-keratins, partially recognized in snakes and absent in non-lepidosaurian species. This result indicates that beta-keratins among different reptilian groups posses different immunoreactive regions.  相似文献   

20.
Retinoic acid-induced transformation of reticulate scales to feather-like structures (Dhouailly and Hardy, '78) provides a useful model to study biochemical differentiation in avian skin. In this study, immunofluorescent analysis of reticulate scale-feathers (RSFs) indicates that they contain beta keratin in feather barbs and, thus, are true feathers, biochemically. Epidermal cells that would otherwise produce only alpha keratin in reticulate scales are induced to reorganize and differentiate into barb ridge cells that accumulate feather beta keratins. The mechanism for these dramatic morphological and biosynthetic responses to retinoic acid is unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号