首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparative study was undertaken of clinical and environmental isolates of non-O1 Vibrio cholerae with respect to their hemagglutinating, hemolytic, enterotoxigenic, and enteropathogenic activities. Cell-associated hemagglutinin titers of the clinical and environmental isolates did not differ much, although the clinical isolates displayed higher cell-free hemagglutinin titers compared with those of environmental isolates. Culture supernatants of 61.5% (24 of 39) of clinical isolates showed hemolytic activity (greater than or equal to 10% lysis of rabbit erythrocytes), while only 33.3% (10 to 30) of the environmental group had such activity. Furthermore, hemolytic activities of the clinical isolates showed a good correlation with their cell-associated hemagglutinin titers which was not true for the environmental group. Culture supernatants of 45.8% (11 of 25) of the clinical and 20% (2 of 10) of the environmental isolates exhibited enterotoxigenic activity in the rabbit ileal loop assay. Such activity was mediated mainly by cholera toxin-like substances, although some of the isolates produced fluid-accumulating factors unrelated to cholera toxin. Experimental animal studies demonstrated that the enteropathogenic potential of the environmental isolates was significantly lower than that of the clinical group. Further analysis of our data showed that phenotypic expression of cholera toxin-like products by the non-O1 V. cholerae isolates was accompanied by their enteropathogenicity. The latter effect was also noted with some of the cholera toxin-negative isolates, particularly in those having high hemagglutinating and hemolytic titers.  相似文献   

2.
A fish pathogen, Vibrio cholerae non-O1, was isolated from diseased ayu fish (Plecoglossus altivelis) collected from rivers in eight prefectural districts of Japan. This organism was found to have biochemical characteristics similar to those of V. cholerae non-O1, except that our isolates were negative for ornithine decarboxylase. Antiserum against an ayu isolate did not agglutinate with the majority of environmental V. cholerae non-O1 isolates, but a major O antigen was common among the ayu isolates. All strains were hemolytic to sheep erythrocytes, and oral administration of culture supernatants induced fluid accumulation in suckling mice. However, the crude toxin was not lethal to adult mice, and no cholera toxin-like enterotoxins were detected.  相似文献   

3.
A fish pathogen, Vibrio cholerae non-O1, was isolated from diseased ayu fish (Plecoglossus altivelis) collected from rivers in eight prefectural districts of Japan. This organism was found to have biochemical characteristics similar to those of V. cholerae non-O1, except that our isolates were negative for ornithine decarboxylase. Antiserum against an ayu isolate did not agglutinate with the majority of environmental V. cholerae non-O1 isolates, but a major O antigen was common among the ayu isolates. All strains were hemolytic to sheep erythrocytes, and oral administration of culture supernatants induced fluid accumulation in suckling mice. However, the crude toxin was not lethal to adult mice, and no cholera toxin-like enterotoxins were detected.  相似文献   

4.
A total of 140 environmental Vibrio cholerae non-O1 isolates, together with several culture collection strains from both environmental and clinical sources, were studied in relation to hemagglutination, surface hydrophobicity, and the enzymatic, hemolytic, cytotoxic, and enterotoxic activities of their extracellular products. A total of 78 and 62% of the strains produced hemagglutinins and exohemagglutinins, respectively. Four different hemagglutinating and two exohemagglutinating activities were found by using eight sugars in the inhibition assays. Cell-bound mannose-sensitive hemagglutination was detected mainly in chicken blood, whereas fucose-sensitive hemagglutination was recorded only in human blood. Cell-bound hemagglutinin resistant to all sugars tested was the only one related to surface hydrophobicity. The surface properties varied along the growth curves. The non-O1 strains displayed strong enzymatic and hemolytic activities, except for esculin hydrolysis. Of 26 non-O1 isolates selected for cytotoxin and enterotoxin production, 23 showed a wide spectrum of cytotoxic effects on cell lines of poikilothermic and homoiothermic species, but they were weakly enterotoxigenic in the infant mouse test. All extracellular products of cytotoxic strains were proteolytic, lipolytic, and hemolytic, and a high percentage produced hemagglutination of chicken blood. The cytotoxic factors in the non-O1 strains analyzed were not R plasmid mediated.  相似文献   

5.
A total of 140 environmental Vibrio cholerae non-O1 isolates, together with several culture collection strains from both environmental and clinical sources, were studied in relation to hemagglutination, surface hydrophobicity, and the enzymatic, hemolytic, cytotoxic, and enterotoxic activities of their extracellular products. A total of 78 and 62% of the strains produced hemagglutinins and exohemagglutinins, respectively. Four different hemagglutinating and two exohemagglutinating activities were found by using eight sugars in the inhibition assays. Cell-bound mannose-sensitive hemagglutination was detected mainly in chicken blood, whereas fucose-sensitive hemagglutination was recorded only in human blood. Cell-bound hemagglutinin resistant to all sugars tested was the only one related to surface hydrophobicity. The surface properties varied along the growth curves. The non-O1 strains displayed strong enzymatic and hemolytic activities, except for esculin hydrolysis. Of 26 non-O1 isolates selected for cytotoxin and enterotoxin production, 23 showed a wide spectrum of cytotoxic effects on cell lines of poikilothermic and homoiothermic species, but they were weakly enterotoxigenic in the infant mouse test. All extracellular products of cytotoxic strains were proteolytic, lipolytic, and hemolytic, and a high percentage produced hemagglutination of chicken blood. The cytotoxic factors in the non-O1 strains analyzed were not R plasmid mediated.  相似文献   

6.
A total of 26 strains of Vibrio cholerae, including members of the O1, O139, and non-O1, non-O139 serogroups from both clinical and environmental sources, were examined for the presence of genes encoding cholera toxin (ctxA), zonula occludens toxin (zot), accessory cholera enterotoxin (ace), hemolysin (hlyA), NAG-specific heat-stable toxin (st), toxin-coregulated pilus (tcpA), and outer membrane protein (ompU), for genomic organization, and for the presence of the regulatory protein genes tcpI and toxR in order to determine relationships between epidemic serotypes and sources of isolation. While 22 of the 26 strains were hemolytic on 5% sheep blood nutrient agar, all strains were PCR positive for hlyA, the hemolysin gene. When multiplex PCR was used, all serogroup O1 and O139 strains were positive for tcpA, ompU, and tcpI. All O1 and O139 strains except one O1 strain and one O139 strain were positive for the ctxA, zot, and ace genes. Also, O1 strain VO3 was negative for the zot gene. All of the non-O1, non-O139 strains were negative for the ctxA, zot, ace, tcpA, and tcpI genes, and all of the non-O1, non-O139 strains except strain VO26 were negative for ompU. All of the strains except non-O1, non-O139 strain VO22 were PCR positive for the gene encoding the central regulatory protein, toxR. All V. cholerae strains were negative for the NAG-specific st gene. Of the nine non-ctx-producing strains of V. cholerae, only one, non-O1, non-O139 strain VO24, caused fluid accumulation in the rabbit ileal loop assay. The other eight strains, including an O1 strain, an O139 strain, and six non-O1, non-O139 strains, regardless of the source of isolation, caused fluid accumulation after two to five serial passages through the rabbit gut. Culture filtrates of all non-cholera-toxigenic strains grown in AKI media also caused fluid accumulation, suggesting that a new toxin was produced in AKI medium by these strains. Studies of clonality performed by using enterobacterial repetitive intergenic consensus sequence PCR, Box element PCR, amplified fragment length polymorphism (AFLP), and pulsed-field gel electrophoresis (PFGE) collectively indicated that the V. cholerae O1 and O139 strains had a clonal origin, whereas the non-O1, non-O139 strains belonged to different clones. The clinical isolates closely resembled environmental isolates in their genomic patterns. Overall, there was an excellent correlation among the results of the PCR, AFLP, and PFGE analyses, and individual strains derived from clinical and environmental sources produced similar fingerprint patterns. From the results of this study, we concluded that the non-cholera-toxin-producing strains of V. cholerae, whether of clinical or environmental origin, possess the ability to produce a new secretogenic toxin that is entirely different from the toxin produced by toxigenic V. cholerae O1 and O139 strains. We also concluded that the aquatic environment is a reservoir for V. cholerae O1, O139, non-O1, and non-O139 serogroup strains.  相似文献   

7.
A fluid-accumulating factor (FAF in the ligated rabbit ileal loop test) from a strain of non-O1 Vibrio cholerae not producing cholera toxin-like enterotoxin (CTLT) was partially purified by ammonium sulfate precipitation, gel filtration with Sephadex G-100, and DEAE cellulose column chromatography. The preparation thus obtained showed collagenolytic, cytolytic, necrotic, and hemorrhagic activities, but was not lethal to mice nor hemolytic to sheep erythrocytes. Desquamation of epithelial cells, inflammatory edema, and hemorrhage were observed in sections of rabbit intestine after inoculation of partially purified FAF (PPFAF). Biological and enzymatic activities of FAF were completely neutralized with anti-PPFAF rabbit serum. More than 70% of non-O1 V. cholerae strains from human diarrheal feces produced FAF in the shake culture of heart infusion broth (Difco). A fluid-accumulating factor immunologically similar to FAF of non-O1 V. cholerae was also produced by V. mimicus strains isolated from human diarrheal feces. These results indicate that the FAF produced by CTLT-negative non-O1 V. cholerae strains is an entity closely related to a cytolytic and hemorrhagic substance or the like, and that this FAF may play a role in the enteropathogenicity of CTLT-negative strains.  相似文献   

8.
Vibrio cholerae non-O1, non-O139 was isolated from natural surface waters from different sites sampled in diarrhea endemic zones in Kolkata, India. Twenty-one of these isolates were randomly selected and included in the characterization. The multiserogroup isolates were compared by their virulence traits with a group of clinical non-O1, non-O139 isolates from the same geographic area. Of the 21 environmental isolates, 6 and 14 strains belonged to Heiberg groups I and II, respectively. Three of the environmental isolates showed resistance to 2,2-diamine-6,7-diisopropylpteridine phosphate. All of the non-O1, non-O139 strains were positive for toxR, and except for one environmental isolate, none of them were positive for tcpA in the PCR assay. None of the isolates were positive for genes encoding cholera toxin (ctxA), heat-stable toxin (est), heat-labile toxin (elt), and Shiga toxin variants (stx) of Escherichia coli. Additionally, except for one environmental isolate (PC32), all were positive for the gene encoding El Tor hemolysin (hly). The culture supernatants of 86% (18 of 21) of the environmental isolates showed a distinct cytotoxic effect on HeLa cells, and some of these strains also produced cell-rounding factor. The lipase, protease, and cell-associated hemagglutination activities and serum resistance properties of the environmental and clinical isolates did not differ much. However, seven environmental isolates exhibited very high hemolytic activities (80 to 100%), while none of the clinical strains belonged to this group. The environmental isolates manifested three adherence patterns, namely, carpet-like, diffuse, and aggregative adherence, and the clinical isolates showed diffuse adherence on HeLa cells. Of the 11 environmental isolates tested for enteropathogenic potential, 8 (73%) induced positive fluid accumulation (≥100) in a mouse model, and the reactivities of these isolates were comparable to those of clinical strains of non-O1, non-O139 and toxigenic O139 V. cholerae. Comparison of the counts of the colonized environmental and clinical strains in the mouse intestine showed that the organisms of both groups had similar colonizing efficiencies. These findings indicate the presence of potentially pathogenic V. cholerae non-O1, non-O139 strains in surface waters of the studied sites in Kolkata.  相似文献   

9.
A collection of Vibrio cholerae non-O1 isolated from the aquatic environs of Calcutta, a cholera-hyperendemic area, were examined for the production of cholera toxin (CT), Shiga-like toxins (Vero toxins), heat-stable enterotoxin, and hemolysins. Two (0.5%) V. cholerae non-O1 isolates produced CT. The DNA from both these isolates also hybridized with a DNA probe containing sequences encoding the A subunit of CT. None of the strains produced Shiga-like toxins or heat-stable enterotoxin. Hemolytic activity was observed in 89.7% of the strains, of which 36.1% exhibited biological activity in the suckling mouse. However, none of them produced a hemolysin that cross-reacted with the thermostable direct hemolysin of Vibrio parahaemolyticus. It appears from this study that a small percentage of environmental V. cholerae non-O1 strains do possess the potential for causing cholera-like diarrhea.  相似文献   

10.
A collection of Vibrio cholerae non-O1 isolated from the aquatic environs of Calcutta, a cholera-hyperendemic area, were examined for the production of cholera toxin (CT), Shiga-like toxins (Vero toxins), heat-stable enterotoxin, and hemolysins. Two (0.5%) V. cholerae non-O1 isolates produced CT. The DNA from both these isolates also hybridized with a DNA probe containing sequences encoding the A subunit of CT. None of the strains produced Shiga-like toxins or heat-stable enterotoxin. Hemolytic activity was observed in 89.7% of the strains, of which 36.1% exhibited biological activity in the suckling mouse. However, none of them produced a hemolysin that cross-reacted with the thermostable direct hemolysin of Vibrio parahaemolyticus. It appears from this study that a small percentage of environmental V. cholerae non-O1 strains do possess the potential for causing cholera-like diarrhea.  相似文献   

11.
A collection of 521 environmental isolates of Vibrio cholerae which were previously examined by the suckling mouse assay and found to be negative for the heat-stable enterotoxin NAG-ST were reassessed by a recently developed DNA probe for NAG-ST. A total of 12 (2.3%) of the isolates hybridized with the NAG-ST probe. By using a cholera toxin (CT) DNA probe, the CT gene was detected in six of the strains in the collection, although none of the isolates of V. cholerae non-O1 hybridized with both of the toxin probes. All of the NAG-ST and CT probe-positive strains were hemolysin positive. Thirty-fold-concentrated supernatants of the three representative NAG-ST DNA probe-positive V. cholerae non-O1 strains gave positive fluid accumulation ratios in the suckling mouse assay even after heating (100 degrees C for 5 min) and also inhibited the binding of a NAG-ST monoclonal antibody to the bound NAG-ST in a competitive enzyme-linked immunosorbent assay (ELISA). Likewise, all six CT probe-positive V. cholerae non-O1 strains produced in vitro CT when examined by the CT bead ELISA. HindIII digest patterns of chromosomal DNA from the representative NAG-ST gene-positive strains were visually indistinguishable. Between the groups of NAG-ST probe-positive strains examined, there was a variation in the hybridizable fragments, with one group of strains exhibiting a hybridizable fragment similar to that of the NRT 36 reference strain; a smaller HindIII fragment hybridized with the NAG-ST probe in the other group of strains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
A collection of 521 environmental isolates of Vibrio cholerae which were previously examined by the suckling mouse assay and found to be negative for the heat-stable enterotoxin NAG-ST were reassessed by a recently developed DNA probe for NAG-ST. A total of 12 (2.3%) of the isolates hybridized with the NAG-ST probe. By using a cholera toxin (CT) DNA probe, the CT gene was detected in six of the strains in the collection, although none of the isolates of V. cholerae non-O1 hybridized with both of the toxin probes. All of the NAG-ST and CT probe-positive strains were hemolysin positive. Thirty-fold-concentrated supernatants of the three representative NAG-ST DNA probe-positive V. cholerae non-O1 strains gave positive fluid accumulation ratios in the suckling mouse assay even after heating (100 degrees C for 5 min) and also inhibited the binding of a NAG-ST monoclonal antibody to the bound NAG-ST in a competitive enzyme-linked immunosorbent assay (ELISA). Likewise, all six CT probe-positive V. cholerae non-O1 strains produced in vitro CT when examined by the CT bead ELISA. HindIII digest patterns of chromosomal DNA from the representative NAG-ST gene-positive strains were visually indistinguishable. Between the groups of NAG-ST probe-positive strains examined, there was a variation in the hybridizable fragments, with one group of strains exhibiting a hybridizable fragment similar to that of the NRT 36 reference strain; a smaller HindIII fragment hybridized with the NAG-ST probe in the other group of strains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Vibrio cholerae, the causative agent of major epidemics of diarrheal disease in Bangladesh, South America, Southeastern Asia, and Africa, was isolated from clinical samples and from aquatic environments during and between epidemics over the past 20 years. To determine the evolutionary relationships and molecular diversity of these strains, in order to understand sources, origin, and epidemiology, a novel DNA fingerprinting technique, amplified fragment length polymorphism (AFLP), was employed. Two sets of restriction enzyme-primer combinations were tested for fingerprinting of V. cholerae serogroup O1, O139, and non-O1, O139 isolates. Amplification of HindIII- and TaqI-digested genomic DNA produced 30 to 50 bands for each strain. However, this combination, although capable of separating environmental isolates of O1 and non-O1 strains, was unable to distinguish between O1 and O139 clinical strains. This result confirmed that clinical O1 and O139 strains are genetically closely related. On the other hand, AFLP analyses of restriction enzyme ApaI- and TaqI-digested genomic DNA yielded 20 to 30 bands for each strain, but were able to separate O1 from O139 strains. Of the 74 strains examined with the latter combination, 26 serogroup O1 strains showed identical banding patterns and were represented by the O1 El Tor strain of the seventh pandemic. A second group, represented by O139 Bengal, included 12 strains of O139 clinical isolates, with 7 from Thailand, 3 from Bangladesh, and 2 from India. Interestingly, an O1 clinical isolate from Africa also grouped with the O139 clinical isolates. Eight clinical O1 isolates from Mexico grouped separately from the O1 El Tor of the seventh pandemic, suggesting an independent origin of these isolates. Identical fingerprints were observed between an O1 environmental isolate from a river in Chile and an O1 clinical strain from Kenya, both isolated more than 10 years apart. Both strains were distinct from the O1 seventh pandemic strain. Two O139 clinical isolates from Africa clustered with environmental non-O1 isolates, independent of other O139 strains included in the study. These results suggest that although a single clone of pathogenic V. cholerae appears responsible for many cases of cholera in Asia, Africa, and Latin America during the seventh pandemic, other cases of clinical cholera were caused by toxigenic V. cholerae strains that appear to have been derived locally from environmental O1 or non-O1 strains.  相似文献   

14.
The pathogenic strains of Vibrio cholerae that cause acute enteric infections in humans are derived from environmental nonpathogenic strains. To track the evolution of pathogenic V. cholerae and identify potential precursors of new pathogenic strains, we analyzed 324 environmental or clinical V. cholerae isolates for the presence of diverse genes involved in virulence or ecological fitness. Of 251 environmental non-O1, non-O139 strains tested, 10 (3.9%) carried the toxin coregulated pilus (TCP) pathogenicity island encoding TCPs, and the CTX prophage encoding cholera toxin, whereas another 10 isolates carried the TCP island alone, and were susceptible to transduction with CTX phage. Most V. cholerae O1 and O139 strains carried these two major virulence determinants, as well as the Vibrio seventh pandemic islands (VSP-1 and VSP-2), whereas 23 (9.1%) non-O1, non-O139 strains carried several VSP island genes, but none carried a complete VSP island. Conversely, 30 (11.9%) non-O1, non-O139 strains carried type III secretion system (TTSS) genes, but none of 63 V. cholerae O1 or O139 strains tested were positive for TTSS. Thus, the distribution of major virulence genes in the non-O1, non-O139 serogroups of V. cholerae is largely different from that of the O1 or O139 serogroups. However, the prevalence of putative accessory virulence genes (mshA, hlyA, and RTX) was similar in all strains, with the mshA being most prevalent (98.8%) followed by RTX genes (96.2%) and hlyA (94.6%), supporting more recent assumptions that these genes imparts increased environmental fitness. Since all pathogenic strains retain these genes, the epidemiological success of the strains presumably depends on their environmental persistence in addition to the ability to produce major virulence factors. Potential precursors of new pathogenic strains would thus require to assemble a combination of genes for both ecological fitness and virulence to attain epidemiological predominance.  相似文献   

15.
Two forms (34 kDa and 32 kDa) of hemagglutinin/protease produced by Vibrio cholerae non-O1 were characterized. The hemagglutinin/protease purified by immunoaffinity column chromatography using a monoclonal antibody was essentially a 34-kDa form. By incubation of the purified 34-kDa form at 37 degrees C, it was processed (autodigested) to the 32-kDa form. The N-terminal 20 amino acid sequences of both the 34- and 32-kDa forms were identical, suggesting that proteolytic processing at the C-terminal region of the 34-kDa hemagglutinin/protease resulted in the 32-kDa form. With this shift, protease activity increased, but hemagglutinating activity decreased, suggesting that the C-terminal region of the hemagglutinin/protease is related to hemagglutinating activity.  相似文献   

16.
Hemagglutination and intestinal adherence properties of non-O1 Vibrio cholerae were studied in vitro. No definite correlation between the cell-associated hemagglutinin titers and the intestinal adhesion indices was noted. Sugar- and glycoprotein-mediated inhibition data also indicated differences between the hemagglutination and adherence processes in respect to the receptor structures. Intestinal adherence of most V. cholerae strains could be inhibited to various extents by N-acetyl D-glucosamine. This observation provides a likely explanation for the ecological behavior of these organisms, which are known to associate themselves with chitinous (chitin:homopolymer of N-acetyl D-glucosamine) surfaces of zooplankton. The absence of any significant difference between the intestinal adherence indices of clinical and environmental isolates suggests that intestinal adhesion may be an essential but not sufficient prerequisite for colonization by and subsequent expression of pathogenicity of these microorganisms.  相似文献   

17.
Hemagglutination and intestinal adherence properties of non-O1 Vibrio cholerae were studied in vitro. No definite correlation between the cell-associated hemagglutinin titers and the intestinal adhesion indices was noted. Sugar- and glycoprotein-mediated inhibition data also indicated differences between the hemagglutination and adherence processes in respect to the receptor structures. Intestinal adherence of most V. cholerae strains could be inhibited to various extents by N-acetyl D-glucosamine. This observation provides a likely explanation for the ecological behavior of these organisms, which are known to associate themselves with chitinous (chitin:homopolymer of N-acetyl D-glucosamine) surfaces of zooplankton. The absence of any significant difference between the intestinal adherence indices of clinical and environmental isolates suggests that intestinal adhesion may be an essential but not sufficient prerequisite for colonization by and subsequent expression of pathogenicity of these microorganisms.  相似文献   

18.
Abstract The extent of contamination of a freshwater lake with Vibrio cholerae 0139 Bengal and the toxigenicity of all the V. cholerae isolates recovered during the period of the study were examined during and after an explosive outbreak of 0139 cholera in Calcutta. Strains biochemically characterized as V. cholerae could be isolated throughout the period of study examined from the freshwater lake samples. Most probable number of V. cholerae belonging to the 0139 serogroup in surface waters was 3 to 4 per 100 ml during major part of the study but isolation of this serogroup from sediment and plankton samples was infrequent. Of the total of 150 strains recovered, 23 (15.3%) agglutinated with the 0139 antiserum while the remaining belonged to the non-O1 non-O139 serogroups. None of the strains agglutinated with the O1 antiserum. All the 23 strains of V. cholerae O139 produced cholera toxin while 7.9% of the 127 non-O1 non-O139 strains also produced cholera toxin. Resistance to ampilicillin, furazolidone and streptomycin was encountered among strains belonging to both V. cholerae O139 and V. cholerae non-O1 non-O139 strains, but the percentage of resistant strains in the former was much higher than in the latter. During this cholera epidemic, possibly due to the introduction of large numbers of toxigenic V. cholerae such as the O139 serogroup, there was an increase in the number of toxigenic vibrios among the innocuous aquatic residents. This presumably occured through genetic exchange and, if substantiated, could play an important role in the re-emergence of epidemics.  相似文献   

19.
Cholera due to Vibrio cholerae has been spreading worldwide, although the reports focusing on Indonesian V. cholerae are few. In this study, in order to investigate how V. cholerae transmitted to human from environment. We extended an epidemiological report that had investigated the genotype of V. cholerae isolated from human pediatric samples and environmental samples. We examined 44 strains of V. cholerae isolated from pediatric diarrhea patients and the environment such as shrimps or oysters collected in three adjacent towns in Surabaya, Indonesia. Susceptibilities were examined for 11 antibiotics. Serotype O1 or O139 genes and pathogenic genes including cholera toxin were detected. Multi-locus sequence typing (MLST) and enterobacterial repetitive intergenic consensus (ERIC)-PCR were also performed to determine genetic diversity of those isolates. Serotype O1 was seen in 17 strains (38.6%) with all pathogenic genes among 44 isolates. Other isolates were non-O1/non-O139 V. cholerae. Regarding antibiotic susceptibilities, those isolates from environmental samples showed resistance to ampicillin (11.4%), streptomycin (9.1%) and nalidixic acid (2.3%) but those isolates from pediatric stools showed no resistance to those 3 kinds of antibiotics. MLST revealed sequence type (ST) 69 in 17 strains (38.6%), ST198 in 3 strains (6.8%) and non-types in 24 strains (54.5%). All the ST69 strains were classified to O1 type with more than 95% similarity by ERIC-PCR, including all 6 (13.6%) isolates from environmental samples with resistance to streptomycin. In conclusion, V. cholerae O1 ST69 strains has been clonally spreading in Surabaya, exhibiting pathogenic factors and antibiotic resistance to streptomycin, especially in the isolates from environment.  相似文献   

20.
Isolation of Vibrio cholerae from aquatic birds in Colorado and Utah   总被引:3,自引:0,他引:3  
Vibrio cholerae was isolated from cloacal swabs and freshly voided feces collected from 20 species of aquatic birds in Colorado and Utah during 1986 and 1987. About 17% (198 of 1,131) fecal specimens collected from July 1986 through August 1987 contained the organism. Both O1 and non-O1 V. cholerae strains were isolated from the fecal specimens. Isolates from eight birds (representing five species) agglutinated in O group 1 antiserum. Supernatants of broth cultures from three isolates which typed as V. cholerae O1 serotype Ogawa gave reactions typical of cholera toxin when tested on Y-1 mouse adrenal cell cultures. Several serovars of non-O1 V. cholerae were isolated from the fecal specimens; serovar 22 was the most prevalent type. All non-O1 isolates were cytotoxic to Y-1 mouse adrenal cells. Only non-O1 V. cholerae was detected in water samples collected from the habitat of the birds. The results of this study suggest that aquatic birds serve as carriers and disseminate V. cholerae over a wide area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号