首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recent atomic force microscopy stretching measurements of single polysaccharide molecules suggest that their elasticity is governed by force-induced conformational transitions of the pyranose ring. However, the mechanism of these transitions and the mechanics of the pyranose ring are not fully understood. Here we use steered molecular dynamics simulations of the stretching process to unravel the mechanism of forced conformational transitions in 1,6 linked polysaccharides. In contrast to most sugars, 1,6 linked polysaccharides have an extra bond in their inter-residue linkage, C5-C6, around which restricted rotations occur and this additional degree of freedom increases the mechanical complexity of these polymers. By comparing the computational results with the atomic force microscopy data we determine that forced rotations around the C5-C6 bond have a significant and different impact on the elasticity of alpha- and beta-linked polysaccharides. Beta-linkages of a polysaccharide pustulan force the rotation around the C5-C6 bonds and produce a Hookean-like elasticity but do not affect the conformation of the pyranose rings. However, alpha-linkages of dextran induce compound conformational transitions that include simultaneous rotations around the C5-C6 bonds and chair-boat transitions of the pyranose rings. These previously not-recognized transitions are responsible for the characteristic plateau in the force-extension relationship of dextran.  相似文献   

2.
Conventional steered molecular dynamics (SMD) simulations do not readily reproduce equilibrium conditions of atomic force microscopy (AFM) stretch and release measurements of polysaccharides undergoing force-induced conformational transitions because of the gap between the timescales of computer simulations ( approximately 1 mus) and AFM measurements ( approximately 1 s). To circumvent this limitation, we propose using the replica exchange method (REM) to enhance sampling during SMD simulations. By applying REM SMD to a small polysaccharide system and comparing the results with those from AFM stretching experiments, we demonstrate that REM SMD reproduces the experimental results not only qualitatively but quantitatively, approaching near equilibrium conditions of AFM measurements. As tested in this work, hysteresis and computational time of REM SMD simulations of short polysaccharide chains are significantly reduced as compared to regular SMD simulations, making REM SMD an attractive tool for studying forced-induced conformational transitions of small biopolymer systems.  相似文献   

3.
Twelve bacterial polysaccharides of known structure containing a representative range of pyruvated monosaccharides, were methanolysed, trimethylsilylated, and analysed by g.l.c. and g.l.c.-m.s. Except for 3,4-O-(1-carboxyethylidene)-L-rhamnose, which was unusually labile, the pyruvic acid substituents were largely retained during methanolysis and the Me3Si derivatives of the resulting pyruvated methyl glycosides gave distinctive g.l.c. peaks with characteristic mass spectra. The pyranose rings of 4,6-O-(1-carboxyethylidene)-D-glucose, 4,6-O-(1-carboxyethylidene)-D-mannose, 4,6-O-(1-carboxyethylidene)-D-galactose, and 3,4-O-(1-carboxyethylidene)-D-galactose survived the methanolysis, but that of 2,3-O-(1-carboxyethylidene)-D-glucuronic acid was cleaved to give the methyl ester of 2,3-O-(1-carboxyethylidene)-aldehydo-D-glucuronic acid dimethyl acetal. In the case of 2,3-O-(1-carboxyethylidene)-D-galactose, cleavage of the pyranose ring was less complete; under the conditions used in these experiments two-thirds of the pyranose rings were intact while one-third were cleaved to give the methyl ester of 2,3-O-(1-carboxyethylidene)-aldehydo-D-galactose dimethyl acetal. A very small amount of 3,4-O-(1-carboxyethylidene)-L-rhamnose from one polysaccharide retained its pyruvic acid substituent after gentle methanolysis to give the methyl ester of 3,4-O-(1-carboxyethylidene)-aldehydo-L-rhamnose dimethyl acetal. Susceptibility to cleavage of the pyranose ring during methanolysis appears to be a property of pyruvated monosaccharides with trans-fused 1,3-dioxolane rings.  相似文献   

4.
The molecular weight of the extracellular polysaccharide (CR1/4) produced by Acetobacter xylinum strain CR1/4 has been shown to be dependent upon growth conditions. Under normal growth conditions a high molecular weight polysaccharide (>1×106 Da) is produced. Maintaining the pH at 5 results in an order of magnitude increase in the total yield of polysaccharide, but also an order of magnitude decrease in molecular weight. Analysis of the CR1/4 polysaccharides by the techniques of atomic force microscopy and static light scattering suggests that they are double helices. In solution the molecules behave as stiff coils with a Kuhn statistical segment length of 325 nm.  相似文献   

5.
Biological macromolecules have complex and nontrivial energy landscapes, endowing them with a unique conformational adaptability and diversity in function. Hence, understanding the processes of elasticity and dissipation at the nanoscale is important to molecular biology and emerging fields such as nanotechnology. Here we analyze single molecule fluctuations in an atomic force microscope, using a generic model of biopolymer viscoelasticity that includes local "internal" conformational dissipation. Comparing two biopolymers, dextran and cellulose (polysaccharides with and without local bistable transitions), demonstrates that signatures of simple conformational change are minima in both the elastic and internal friction constants around a characteristic force. A novel analysis of dynamics on a bistable energy landscape provides a simple explanation: an elasticity driven by the entropy, and friction by a barrier-controlled hopping time of populations between states, which is surprisingly distinct to the well-known relaxation time. This nonequilibrium microscopic analysis thus provides a means of quantifying new dynamical features of the energy landscape of the glucopyranose ring, revealing an unexpected underlying roughness and information on the shape of the barrier of the chair-boat transition in dextran. The results presented herein provide a basis toward probing the viscoelasticity of macromolecular conformational transitions on more complex energy landscapes, such as during protein folding.  相似文献   

6.
Marine-gel biopolymers were recently visualized at the molecular level using atomic force microscopy (AFM) to reveal fine fibril-forming networks with low to high degrees of cross-linking. In this work, we use force spectroscopy to quantify the intra- and intermolecular forces within the marine-gel network. Combining force measurements, AFM imaging, and the known chemical composition of marine gels allows us to identify the microscopic origins of distinct mechanical responses. At the single-fibril level, we uncover force-extension curves that resemble those of individual polysaccharide fibrils. They exhibit entropic elasticity followed by extensions associated with chair-to-boat transitions specific to the type of polysaccharide at high forces. Surprisingly, a low degree of cross-linking leads to sawtooth patterns that we attribute to the unraveling of polysaccharide entanglements. At a high degree of cross-linking, we observe force plateaus that arise from unzipping, as well as unwinding, of helical bundles. Finally, the complex 3D network structure gives rise to force staircases of increasing height that correspond to the hierarchical peeling of fibrils away from the junction zones. In addition, we show that these diverse mechanical responses also arise in reconstituted polysaccharide gels, which highlights their dominant role in the mechanical architecture of marine gels.  相似文献   

7.
Marine-gel biopolymers were recently visualized at the molecular level using atomic force microscopy (AFM) to reveal fine fibril-forming networks with low to high degrees of cross-linking. In this work, we use force spectroscopy to quantify the intra- and intermolecular forces within the marine-gel network. Combining force measurements, AFM imaging, and the known chemical composition of marine gels allows us to identify the microscopic origins of distinct mechanical responses. At the single-fibril level, we uncover force-extension curves that resemble those of individual polysaccharide fibrils. They exhibit entropic elasticity followed by extensions associated with chair-to-boat transitions specific to the type of polysaccharide at high forces. Surprisingly, a low degree of cross-linking leads to sawtooth patterns that we attribute to the unraveling of polysaccharide entanglements. At a high degree of cross-linking, we observe force plateaus that arise from unzipping, as well as unwinding, of helical bundles. Finally, the complex 3D network structure gives rise to force staircases of increasing height that correspond to the hierarchical peeling of fibrils away from the junction zones. In addition, we show that these diverse mechanical responses also arise in reconstituted polysaccharide gels, which highlights their dominant role in the mechanical architecture of marine gels.  相似文献   

8.
Hydrated polysaccharides are major constituents of cartilage and play an important role in its water-binding properties. Infrared (IR) spectroscopy and sorption isotherms have been used to investigate the hydration behavior of the glycosaminoglycans hyaluronic acid and chondroitin sulfate. IR-dichroism of the vibrational modes of the pyranose ring is found at relative humidities (RH) smaller than 84%. The IR-dichroism data for the vibrational modes of the pyranose ring have been analyzed with respect to the helical structure of these polysaccharides. The orientation vanishes at higher relative humidities (>84%), because a strong increase in the water uptake occurs in the observed sorption isotherms. Differences in the IR-absorbance of the O-H stretching mode of sorbed water between hyaluronic acid and chondroitin sulfate are shown to be caused by the additional hydration of the sulfate groups. The corresponding H-bonds are weaker than those of the hydration shell of the pyranose rings.  相似文献   

9.
Novel approaches to the analysis of polysaccharide structures.   总被引:2,自引:0,他引:2  
Recently, atomic force microscopy has been used to image a variety of polysaccharides and map their distribution on cell surfaces. The mechanical response of polysaccharides to tensile stress has been investigated in single-molecule force spectroscopy experiments. Small-angle X-ray scattering has provided a probe of polysaccharide structure operating in a size range (2-25 nm) that is intermediate between those accessible using nuclear magnetic resonance and light scattering.  相似文献   

10.
Understanding the adsorption properties of polysaccharides in terms of substrate affinity, kinetics, and layer structure is of paramount importance in numerous industrial and natural systems. The structural growth of the layers of two model polysaccharides--sodium alginate and polygalacturonic acid (PGA)--was characterized by quartz crystal microbalance with dissipation and atomic force microscopy. Monitoring the variations in frequency and dissipation energy provides insights into both the average adsorbed mass and the viscoelastic properties of the adsorbed layer of polyelectrolytes along with the associated ions and water molecules. Both polysaccharides had similar adsorption patterns with increasing ionic strengths and showed significant complexation of calcium ions. In the presence of calcium, the alginate gel layer exhibited significant swelling with an increasing concentration of monovalent salt that the PGA gel layer did not manifest. Basing our discussion on the "egg-box model", we interpreted these different swelling behaviors as resulting from differences in the complexation modes of the two polysaccharides. The dimerization of the polymers by cross-linking and the weaker dimer-dimer associations play major roles in the sensitivity of the polysaccharide gel matrix to high salt concentration environments.  相似文献   

11.
In the studies of force-induced conformational transitions of biomolecules, the large timescale difference from experiments presents the challenge of obtaining convergent sampling for molecular dynamics simulations. To circumvent this fundamental problem, an approach combining the replica-exchange method and umbrella sampling (REM-US) was developed to simulate mechanical stretching of biomolecules under equilibrium conditions. Equilibrium properties of conformational transitions can be obtained directly from simulations without further assumptions. To test the performance, we carried out REM-US simulations of atomic force microscope (AFM) stretching and relaxing measurements on the polysaccharide pustulan, a (1→6)-β-D-glucan, which undergoes well-characterized rotameric transitions in the backbone bonds. With significantly enhanced sampling convergence and efficiency, the REM-US approach closely reproduced the equilibrium force-extension curves measured in AFM experiments. Consistent with the reversibility in the AFM measurements, the new approach generated identical force-extension curves in both stretching and relaxing simulations—an outcome not reported in previous studies, proving that equilibrium conditions were achieved in the simulations. REM-US may provide a robust approach to modeling of mechanical stretching on polysaccharides and even nucleic acids.  相似文献   

12.
Single-molecule force spectroscopy has provided important insights into the properties and mechanisms of biological molecules and systems. A common experiment is to measure the force dependence of conformational changes at equilibrium. Here, we demonstrate that the commonly used technique of force feedback has severe limitations when used to evaluate rapid macromolecular conformational transitions. By comparing the force-dependent dynamics of three major classes of macromolecules (DNA, RNA, and protein) using both a constant-force-feedback and a constant-trap-position technique, we demonstrate a problem in force-feedback experiments. The finite response time of the instrument’s force feedback can modify the behavior of the molecule, leading to errors in the reported parameters, such as the rate constants and the distance to the transition state, for the conformational transitions. We elucidate the causes of this problem and provide a simple test to identify and evaluate the magnitude of the effect. We recommend avoiding the use of constant force feedback as a method to study rapid conformational changes in macromolecules.  相似文献   

13.
对鸡腿蘑多糖的结构进行检测,并在此基础上探讨结构与活性的关系,对深度发掘鸡腿蘑多糖的功效具有重要意义.制备发酵时间为72 h、96 h和120 h的鸡腿蘑胞外粗多糖,采用PMP柱前衍生化-HPLC法分析其单糖组成,结果表明发酵72 h、96 h和120 h胞外多糖均由D-甘露糖、L-鼠李糖、D-葡萄糖、D-半乳糖、D-...  相似文献   

14.
A variety of biopolymers is imaged using noncontact atomic force microscopy. Samples are prepared by aerosol spray deposition of aqueous solutions on freshly cleaved mica followed by air drying. The distributions of contour lengths and chain or fibril thicknesses normal to the mica substrate can be measured for individual polymer molecules or molecular assemblies. In many cases it is possible to conclude that the structures imaged and quantitatively analyzed are representative of those present in solution and not artifacts of the deposition/dessication process. Imaging of linear and cyclic triple helices of the polysaccharide scleroglucan is demonstrated. Measurements of the triple helix thickness normal to the mica surface are analyzed, and successful measurements of the molecular weight distribution and mean molar mass are described. It is demonstrated that the extent of chain association in the polysaccharide xanthan can be modulated by the addition of low molecular weight salts. The contour length and chain thickness distributions in a xanthan fraction are presented. Increases in the extent of chain association with increasing polymer concentration are documented for the gelling polysaccharide gellan, and the formation of stiff fibrillar gellan aggregates in the presence of added low molecular salt is demonstrated. Images are presented of the polysaccharide κ-carrageenan in its disordered, and presumably single-stranded, state. Biopolymers other than polysaccharides can be imaged by the same technique; this is demonstrated with the fibrous protein collagen. In general it is shown that aerosol spray deposition of biopolymer samples can be used in conjunction with noncontact atomic force microscopy to provide a fast, reliable, and reproducible method for assessing the size and shape distributions of individual biological macromolecules and macromolecular assemblies in solution with a minimum of time and effort devoted to sample preparation. © 1997 John Wiley & Sons, Inc. Biopoly 42: 133–146, 1997  相似文献   

15.
Extracellular polysaccharide production by marine diatoms is a significant route by which photosynthetically produced organic carbon enters the trophic web and may influence the physical environment in the sea. This study highlights the capacity of atomic force microscopy (AFM) for investigating diatom extracellular polysaccharides with a subnanometer resolution. Here we address a ubiquitous marine diatom Cylindrotheca closterium, isolated from the northern Adriatic Sea, and its extracellular polymeric substance (EPS) at a single cell level. We applied a simple procedure for AFM imaging of diatom cells on mica under ambient conditions (in air) to achieve visualization of their EPS with molecular resolution. The EPS represents a web of polysaccharide fibrils with two types of cross-linking: fibrils association forming junction zones and fibril-globule interconnections with globules connecting two or more fibrils. The fibril heights were 0.4-2.6 nm while globules height was in the range of 3-12 nm. Polymer networks of native gel samples from the Northern Adriatic and the network formed by polysaccharides extracted from the C. closterium culture share the same features regarding the fibril heights, pore openings and the mode of fibril association, proving that the macroscopic gel phase in the Northern Adriatic can be formed directly by the self-assembly of diatom released polysaccharide fibrils.  相似文献   

16.
Lytic polysaccharide monooxygenase (LPMO) represents a unique principle of oxidative degradation of recalcitrant insoluble polysaccharides. Used in combination with hydrolytic enzymes, LPMO appears to constitute a significant factor of the efficiency of enzymatic biomass depolymerization. LPMO activity on different cellulose substrates has been shown from the slow release of oxidized oligosaccharides into solution, but an immediate and direct demonstration of the enzyme action on the cellulose surface is lacking. Specificity of LPMO for degrading ordered crystalline and unordered amorphous cellulose material of the substrate surface is also unknown. We show by fluorescence dye adsorption analyzed with confocal laser scanning microscopy that a LPMO (from Neurospora crassa) introduces carboxyl groups primarily in surface-exposed crystalline areas of the cellulosic substrate. Using time-resolved in situ atomic force microscopy we further demonstrate that cellulose nano-fibrils exposed on the surface are degraded into shorter and thinner insoluble fragments. Also using atomic force microscopy, we show that prior action of LPMO enables cellulases to attack otherwise highly resistant crystalline substrate areas and that it promotes an overall faster and more complete surface degradation. Overall, this study reveals key characteristics of LPMO action on the cellulose surface and suggests the effects of substrate morphology on the synergy between LPMO and hydrolytic enzymes in cellulose depolymerization.  相似文献   

17.
本文报道了液体培养灵芝Gl8801菌林产生胞外多糖的最佳发酵条件和胞外多搪的化学组成。适宜的液体培养基(g/L):饴糖40,花生饼粉30,KH_2PO_41.5,(NH_4)_2SO_41.5,MgSO_4·7H_2O_(0.75),CaCO_32,最适起始pH5.5。300ml三角瓶装培养基60ml,发酵温度28℃。摇瓶(165rpm)培养7~8天,发酵液纯多糖含量可达880mg/L。灵芝胞外多糖分为水溶性多糖和水不溶性多糖两种。水溶性多糖的单糖组份为半乳糖、葡萄糖、阿拉伯糖和木糖,所含单糖重量比为6:4:4:1。不溶性多糖为葡聚糖。灵芝胞外多糖的糖环构型为吡喃糖,末端糖基构型,半乳糖为α型,葡萄糖为β型。  相似文献   

18.
用超声波辅助提取法从柴胡中提取、分离得到多糖SAP3。高效液相色谱法测定其相对分子质量,红外光谱、气相色谱和原子力显微镜对其结构进行初步分析。结果表明:柴胡多糖SAP3是组分均一的多糖,由鼠李糖、木糖、甘露糖、葡萄糖、半乳糖组成,平均相对分子质量为3.3×105。红外光谱分析表明:柴胡多糖具有一般多糖类物质的特征吸收峰,单糖残基以吡喃环的形式存在。原子力显微镜显示柴胡多糖糖链具有分支结构,并缠绕形成环状结构。在0.2~1.2 mg/mL的实验浓度范围内,随着多糖质量浓度的升高,柴胡多糖SAP3对.OH的清除率逐渐增大,最大清除率可达45.2%。  相似文献   

19.
Microbial hydrolysis of polysaccharides is critical to ecosystem functioning and is of great interest in diverse biotechnological applications, such as biofuel production and bioremediation. Here we demonstrate the use of a new, efficient approach to recover genomes of active polysaccharide degraders from natural, complex microbial assemblages, using a combination of fluorescently labeled substrates, fluorescence-activated cell sorting, and single cell genomics. We employed this approach to analyze freshwater and coastal bacterioplankton for degraders of laminarin and xylan, two of the most abundant storage and structural polysaccharides in nature. Our results suggest that a few phylotypes of Verrucomicrobia make a considerable contribution to polysaccharide degradation, although they constituted only a minor fraction of the total microbial community. Genomic sequencing of five cells, representing the most predominant, polysaccharide-active Verrucomicrobia phylotype, revealed significant enrichment in genes encoding a wide spectrum of glycoside hydrolases, sulfatases, peptidases, carbohydrate lyases and esterases, confirming that these organisms were well equipped for the hydrolysis of diverse polysaccharides. Remarkably, this enrichment was on average higher than in the sequenced representatives of Bacteroidetes, which are frequently regarded as highly efficient biopolymer degraders. These findings shed light on the ecological roles of uncultured Verrucomicrobia and suggest specific taxa as promising bioprospecting targets. The employed method offers a powerful tool to rapidly identify and recover discrete genomes of active players in polysaccharide degradation, without the need for cultivation.  相似文献   

20.
Recently, we have shown that the capsular polysaccharide of Bacteroides fragilis NCTC 9343 is composed of an aggregate of two discrete large molecular weight polysaccharides (designated polysaccharides A and B). Following disaggregation of this capsular complex by very mild acid treatment, high resolution NMR spectroscopy demonstrated that polysaccharides A and B consist of highly charged repeating unit structures with unusual substituent groups (Baumann, H., Tzianabos, A. O., Brisson, J.-R., Kasper, D.L., and Jennings, H.J. (1992) Biochemistry 31, 4081-4089). Presently, we report that the capsular polysaccharide of B. fragilis represents a complex structure that is formed as a result of ionic interactions between polysaccharides A and B. Electron microscopy of immunogold-labeled organisms (with monoclonal antibodies specific for polysaccharides A and B) demonstrated that the two polysaccharides are co-expressed on the cell surface of B. fragilis. We have shown that the purified capsule complex is made up exclusively of polysaccharide A and polysaccharide B (no other macromolecular structure was detected) in a 1:3.3 ratio and that disaggregation of this complex into the native forms of the constituent polysaccharides could be accomplished by preparative isoelectric focusing. Structural analyses of the native polysaccharides A and B showed that they possessed the same repeating unit structures as the respective acid-derived polysaccharides. The ionic nature of the linkage between polysaccharides A and B was demonstrated by reassociation of the native polysaccharides to form an aggregated polymer comparable to the original complex. The distinctive composition of this macromolecule may provide a rationale for the unusual biologic properties associated with the B. fragilis capsular polysaccharide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号