首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Background  

Many studies of biochemical networks have analyzed network topology. Such work has suggested that specific types of network wiring may increase network robustness and therefore confer a selective advantage. However, knowledge of network topology does not allow one to predict network dynamical behavior – for example, whether deleting a protein from a signaling network would maintain the network's dynamical behavior, or induce oscillations or chaos.  相似文献   

2.

Background  

Uncovering cellular roles of a protein is a task of tremendous importance and complexity that requires dedicated experimental work as well as often sophisticated data mining and processing tools. Protein functions, often referred to as its annotations, are believed to manifest themselves through topology of the networks of inter-proteins interactions. In particular, there is a growing body of evidence that proteins performing the same function are more likely to interact with each other than with proteins with other functions. However, since functional annotation and protein network topology are often studied separately, the direct relationship between them has not been comprehensively demonstrated. In addition to having the general biological significance, such demonstration would further validate the data extraction and processing methods used to compose protein annotation and protein-protein interactions datasets.  相似文献   

3.

Background  

Structural variations caused by a wide range of physico-chemical and biological sources directly influence the function of a protein. For enzymatic proteins, the structure and chemistry of the catalytic binding site residues can be loosely defined as a substructure of the protein. Comparative analysis of drug-receptor substructures across and within species has been used for lead evaluation. Substructure-level similarity between the binding sites of functionally similar proteins has also been used to identify instances of convergent evolution among proteins. In functionally homologous protein families, shared chemistry and geometry at catalytic sites provide a common, local point of comparison among proteins that may differ significantly at the sequence, fold, or domain topology levels.  相似文献   

4.

Background  

Gene set analysis is moving towards considering pathway topology as a crucial feature. Pathway elements are complex entities such as protein complexes, gene family members and chemical compounds. The conversion of pathway topology to a gene/protein networks (where nodes are a simple element like a gene/protein) is a critical and challenging task that enables topology-based gene set analyses.  相似文献   

5.

Background  

Alpha-helical transmembrane (TM) proteins are involved in a wide range of important biological processes such as cell signaling, transport of membrane-impermeable molecules, cell-cell communication, cell recognition and cell adhesion. Many are also prime drug targets, and it has been estimated that more than half of all drugs currently on the market target membrane proteins. However, due to the experimental difficulties involved in obtaining high quality crystals, this class of protein is severely under-represented in structural databases. In the absence of structural data, sequence-based prediction methods allow TM protein topology to be investigated.  相似文献   

6.
Wunderlich  Zeba  Mirny  Leonid 《Genome biology》2005,6(13):P15-30

Background  

Understanding the relationships between the structure (topology) and function of biological networks is a central question of systems biology. The idea that topology is a major determinant of systems function has become an attractive and highly-disputed hypothesis. While the structural analysis of interaction networks demonstrates a correlation between the topological properties of a node (protein, gene) in the network and its functional essentiality, the analysis of metabolic networks fails to find such correlations. In contrast, approaches utilizing both the topology and biochemical parameters of metabolic networks, e.g. flux balance analysis (FBA), are more successful in predicting phenotypes of knock-out strains.  相似文献   

7.

Background  

The architecture of biological networks has been reported to exhibit high level of modularity, and to some extent, topological modules of networks overlap with known functional modules. However, how the modular topology of the molecular network affects the evolution of its member proteins remains unclear.  相似文献   

8.

Background  

The exploration of the structural topology and the organizing principles of genome-based large-scale metabolic networks is essential for studying possible relations between structure and functionality of metabolic networks. Topological analysis of graph models has often been applied to study the structural characteristics of complex metabolic networks.  相似文献   

9.

Background  

Many complex random networks have been found to be scale-free. Existing literature on scale-free networks has rarely considered potential false positive and false negative links in the observed networks, especially in biological networks inferred from high-throughput experiments. Therefore, it is important to study the impact of these measurement errors on the topology of the observed networks.  相似文献   

10.

Background  

In many protein-protein interaction (PPI) networks, densely connected hub proteins are more likely to be essential proteins. This is referred to as the "centrality-lethality rule", which indicates that the topological placement of a protein in PPI network is connected with its biological essentiality. Though such connections are observed in many PPI networks, the underlying topological properties for these connections are not yet clearly understood. Some suggested putative connections are the involvement of essential proteins in the maintenance of overall network connections, or that they play a role in essential protein clusters. In this work, we have attempted to examine the placement of essential proteins and the network topology from a different perspective by determining the correlation of protein essentiality and reverse nearest neighbor topology (RNN).  相似文献   

11.

Background  

We propose an efficient and biologically sensitive algorithm based on repeated random walks (RRW) for discovering functional modules, e.g., complexes and pathways, within large-scale protein networks. Compared to existing cluster identification techniques, RRW implicitly makes use of network topology, edge weights, and long range interactions between proteins.  相似文献   

12.

Background  

The topology of a biological pathway provides clues as to how a pathway operates, but rationally using this topology information with observed gene expression data remains a challenge.  相似文献   

13.

Background  

It is well known that different species have different protein domain repertoires, and indeed that some protein domains are kingdom specific. This information has not yet been incorporated into statistical methods for finding domains in sequences of amino acids.  相似文献   

14.

Background  

The idea that the assembly of protein complexes is linked with protein disorder has been inferred from a few large complexes, such as the viral capsid or bacterial flagellar system, only. The relationship, which suggests that larger complexes have more disorder, has never been systematically tested. The recent high-throughput analyses of protein-protein interactions and protein complexes in the cell generated data that enable to address this issue by bioinformatic means.  相似文献   

15.

Background  

Successive whole genome duplications have recently been firmly established in all major eukaryote kingdoms. Such exponential evolutionary processes must have largely contributed to shape the topology of protein-protein interaction (PPI) networks by outweighing, in particular, all time-linear network growths modeled so far.  相似文献   

16.

Background  

Transmembrane (TM) proteins are proteins that span a biological membrane one or more times. As their 3-D structures are hard to determine, experiments focus on identifying their topology (i. e. which parts of the amino acid sequence are buried in the membrane and which are located on either side of the membrane), but only a few topologies are known. Consequently, various computational TM topology predictors have been developed, but their accuracies are far from perfect. The prediction quality can be improved by applying a consensus approach, which combines results of several predictors to yield a more reliable result.  相似文献   

17.

Background  

Insulin is a therapeutic protein that is widely used for the treatment of diabetes. Its biological function was discovered more than 80 years ago and it has since then been characterized extensively. Crystallization of the insulin molecule has always been a key activity since the protein is often administered by subcutaneous injections of crystalline insulin formulations. Over the years, insulin has been crystallized and characterized in a number of crystal systems.  相似文献   

18.
19.

Background  

Network motifs are recurrent interaction patterns, which are significantly more often encountered in biological interaction graphs than expected from random nets. Their existence raises questions concerning their emergence and functional capacities. In this context, it has been shown that feed forward loops (FFL) composed of three genes are capable of processing external signals by responding in a very specific, robust manner, either accelerating or delaying responses. Early studies suggested a one-to-one mapping between topology and dynamics but such view has been repeatedly questioned. The FFL's function has been attributed to this specific response. A general response analysis is difficult, because one is dealing with the dynamical trajectory of a system towards a new regime in response to external signals.  相似文献   

20.

Background  

The development and improvement of reliable computational methods designed to evaluate the quality of protein models is relevant in the context of protein structure refinement, which has been recently identified as one of the bottlenecks limiting the quality and usefulness of protein structure prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号