首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Localization of Phospholipid Synthesis to Schwann Cells and Axons   总被引:7,自引:6,他引:1  
Quantitative electron microscopic autoradiography was used to detect and characterize endoneurial sites of lipid synthesis in mouse sciatic nerve. Six tritiated phospholipid precursors (choline, serine, methionine, inositol, glycerol, and ethanolamine) and a protein precursor (proline) were individually injected into exposed nerves and after 2 h the mice were perfused with buffered aldehyde. The labeled segments of nerve were prepared for autoradiography with procedures that selectively remove nonincorporated precursors and other aqueous metabolites, while preserving nerve lipids (and proteins). At both the light and electron microscope levels, the major site of phospholipid and protein synthesis was the crescent-shaped perinuclear cytoplasm of myelinating Schwann cells. Other internodal Schwann cell cytoplasm, including that in surface channels, Schmidt-Lanterman incisures, and paranodal regions, was less well labeled than the perinuclear region. Newly formed proteins were selectively located in the Schwann cell nucleus. Lipid and protein formation was also detected in unmyelinated fiber bundles and in endoneurial and perineurial cells. Tritiated inositol was selectively incorporated into phospholipids in both myelinated axons and unmyelinated fibers. Like inositol, glycerol incorporation appeared particularly active in unmyelinated fibers. Quantitative autoradiographic analyses substantiated the following points: myelinating Schwann cells dominate phospholipid and protein synthesis, myelinated axons selectively incorporate tritiated inositol, phospholipid precursors label myelin sheaths and myelinated axons better than proline.  相似文献   

2.
Abstract: Biochemical methods were used to study the time course of transport of choline phospholipids (labeled by the injection of [3H]choline into the ventral horn of the lumbar spinal cord) in rat sciatic nerve. Autoradiographic methods were used to localize the transported lipid within motor axons. Transported phospholipid, primarily phosphatidylcholine, present in the nerve at 6 h, continued to accumulate over the following 12 days. No discrete waves of transported lipid were observed (a small wave of radioactive phospholipid moving at the high rate would have been missed); the amounts of radioactive lipid increased uniformly along the entire sciatic nerve. In light-microscope autoradiographs, a class of large-caliber axons, presumably motor axons, retained the labeled lipid. Some lipid, even at 6 h, was seen within the myelin sheaths. Later, the labeling of the myelin relative to axon increased. The continued accumulation of choline phospholipids in the axons probably signifies their prolonged release from cell bodies and their retention in various axonal membranes, including the axolemma. The build-up of these phospholipids in myelin probably represents their transfer from the axons to the myelin sheaths surrounding them. When nerves are crushed and allowed to regenerate for 6 or 12 days, choline phospholipids transported during these times enter the regenerating nerve. In light and electron microscope autoradiographs, transported lipid was seen to be localized primarily in the regenerating axons. However, grains overlay the adjacent Schwann cell cytoplasm, indicating transported lipids were transferred from the regenerating axons to the associated Schwann cells. In addition, some cells not associated with growing axons were labeled, suggesting that phosphatidylcholine and possibly acetylcholine, carried to the regenerating axons by axonal transport, were actively metabolized in the terminal, with released choline label being used by other cells. These results demonstrate that axonal transport supplies mature and growing axons and their glial cells with choline phospholipids.  相似文献   

3.
Biopsy of the sural nerve was performed on three patients with severe Minamata disease of more than 10 years duration. There were so many unmyelinated and poorly myelinated nerve fibers that myelinated fibers scattered irregularly in small numbers or in groups of peculiar features in the intraneural bundle. Abnormaly thin or poorly formed myelin sheaths were noticed. Incomplete myelination and abnormal myelination varied in size and shape appeared as fetal anomaly. Regenerated axons extremely small in size remained singly or in groups following regenerative sprouting. Sometimes, extremely small axons with normal myelination were noticeable, while the axons were lost, leaving myelin sheaths. Axons occasionally contained increased neurofilaments. Schwann cells were not so increased as in adult Minamata disease. Degenerative changes of nerve fibers still proceeded, presumably because the patients lived in the mercury-contaminated district. Myelin degenerations and glycogen deposits in the axoplasm were identified.  相似文献   

4.
S M de Waegh  V M Lee  S T Brady 《Cell》1992,68(3):451-463
Studies in Trembler and control mice demonstrated that myelinating Schwann cells exert a profound influence on axons. Extensive contacts between myelin and axons have been considered structural. However, demyelination decreases neurofilament phosphorylation, slow axonal transport, and axonal diameter, as well as significantly increasing neurofilament density. In control sciatic nerves with grafted Trembler nerve segments, these changes were spatially restricted: they were confined to axon segments without normal myelination. Adjacent regions of the same axons had normal diameters, neurofilament phosphorylation, cytoskeletal organization, and axonal transport rates. Close intercellular contacts between myelinating Schwann cells and axons modulate a kinase-phosphatase system acting on neurofilaments and possibly other substrates. Myelination by Schwann cells sculpts the axon-altering functional architecture, electrical properties, and neuronal morphologies.  相似文献   

5.
Phospholipid Metabolism in Mouse Sciatic Nerve In Vivo   总被引:4,自引:4,他引:0  
To probe the activities of various pathways of lipid metabolism in peripheral nerve, six phospholipid-directed precursors were individually injected into the exposed sciatic nerves of adult mice, and their incorporation into phospholipids and proteins was studied over a 2-week period. Tritiated choline, inositol, ethanolamine, serine, and glycerol were mainly used in phospholipid synthesis; in contrast, methyl-labeled methionine was primarily incorporated into protein. Phosphatidylcholine was the main lipid formed from tritiated choline, glycerol, and methionine precursors. Phosphatidylserine, phosphatidylethanolamine, and phosphatidylinositol were the main lipids formed from serine, ethanolamine, and inositol, respectively. With time there was a shift in label among phospholipids, with higher proportions of choline appearing in sphingomyelin, glycerol in phosphatidylserine, ethanolamine in phosphatidylethanolamine (plasmalogen), and inositol in polyphosphoinositides, especially phosphatidylinositol 4,5-bisphosphate. We suggest that the delay in formation of these phospholipids, which are concentrated in peripheral nerve myelin, may, at least in part, be due to their formation at a site(s) distant from the sites where the bulk of Schwann cell lipids are made. We propose that separating the synthesis of these myelin-destined lipids to near the Schwann cell's plasma membrane would facilitate their concentration in peripheral nerve myelin sheaths. At earlier labeling times, ethanolamine and glycerol were more actively incorporated into phosphatidylcholine and phosphatidylinositol, respectively, than later. The transient labeling of these phospholipids may reflect some unique role in peripheral nerve function.  相似文献   

6.
Incorporation of newly formed lecithin into peripheral nerve myelin   总被引:5,自引:5,他引:0       下载免费PDF全文
Radioactive choline was used to study the metabolism and movement of choline-containing phospholipids in peripheral nerve myelin of adult mice. Incorporation at various times after intraperitoneal injection was measured in serial segments of sciatic nerve as well as in myelin isolated from those segments. At no time (1 h to 35 days) could a proximal-distal difference in the extent of labeling be demonstrated. This finding suggests that incorporation of precursor choline phospholipids into nerve membranes is a local event, with little contribution from the neuronal perikaryon via axoplasmic transport. Autoradiographic investigations were undertaken to elucidate the pattern of movement of radioactive choline-labeled phospholipids, predominantly lecithin, into the myelin sheaths of the sciatic nerve. A sequence of autoradiographs was prepared from animals sacrificed between 20 min and 35 days after a microinjection of precursor directly into the nerve. Analysis of these autoradiograms revealed that labeling is initially concentrated in the Schwann cell cytoplasm. Later, the label moves first into the outer regions of the myelin sheaths and is eventually distributed evenly throughout the inner and outer layers of the sheath. At no time is there a build-up of label in the axon. The rate of uptake of precursor and subsequent redistribution of lecithin into the myelin were also examined in frog sciatic nerve (18 degrees C). Both uptake and redistribution processes were considerably slower in the cold-blooded animal.  相似文献   

7.
Remyelination is an important aspect of nerve regeneration after nerve injury but the underlying mechanisms are not fully understood. The neurotrophin receptor, p75(NTR), in activated Schwann cells in the Wallerian degenerated nerve is up-regulated and may play a role in the remyelination of regenerating peripheral nerves. In the present study, the role of p75(NTR) in remyelination of the sciatic nerve was investigated in p75(NTR) mutant mice. Histological results showed that the number of myelinated axons and thickness of myelin sheath in the injured sciatic nerves were reduced in mutant mice compared with wild-type mice. The myelin sheath of axons in the intact sciatic nerve of adult mutant mice is also thinner than that of wild-type mice. Real-time RT-PCR showed that mRNA levels for myelin basic protein and P0 in the injured sciatic nerves were significantly reduced in p75(NTR) mutant animals. Western blots also showed a significant reduction of P0 protein in the injured sciatic nerves of mutant animals. These results suggest that p75(NTR) is important for the myelinogenesis during the regeneration of peripheral nerves after injury.  相似文献   

8.
Interest in the glycosphingolipid galactocerebroside (GC) is based on the consensus that in the nervous system it is expressed only by myelin-forming Schwann cells and oligodendrocytes, and that it has a specific role in the elaboration of myelin sheaths. We have investigated GC distribution in two rat nerves--the sciatic, containing a mixture of myelinated and non-myelinated axons, and the cervical sympathetic trunk, in which greater than 99% of axons are non-myelinated. Immunohistochemical experiments using mono- and polyclonal GC antibodies were carried out on teased nerves and cultured Schwann cells, and GC synthesis was assayed biochemically. Unexpectedly, we found that mature non-myelin-forming Schwann cells in situ and in short-term cultures express unambiguous GC immunoreactivity, comparable in intensity to that of myelinated fibers or myelin-forming cells in short-term cultures. GC synthesis was also detected in both sympathetic trunks and sciatic nerves. In the developing sympathetic trunk, GC was first seen at day 19 in utero, the number of GC-positive cells rising to approximately 95% at postnatal day 10. In contrast, the time course of GC appearance in the sciatic nerve shows two separate phases of increase, between day 18 in utero and postnatal day 1, and between postnatal days 20 and 35, at which stage approximately 94% of the cells express GC. These time courses suggest that Schwann cells, irrespective of subsequent differentiation pathway, start expressing GC at about the same time as cell division stops. We suggest that GC is a ubiquitous component of mature Schwann cell membranes in situ. Therefore, the role of GC needs to be reevaluated, since its function is clearly not restricted to events involved in myelination.  相似文献   

9.
Incorporation of glycoproteins into peripheral nerve myelin   总被引:14,自引:4,他引:10       下载免费PDF全文
Peripheral nerve myelin contains a dominant low molecular weight glycoprotein called Po. To study the metabolism of this glycoprotein, tritiated fucose was injected into the peripheral nerves of adult mice and developing rats, and the temporal distribution of label was examined by autoradiography and gel electrophoresis. Mice and rat pups, injected with fucose, were sacrificed from 1 h to 98 days later. Series of autoradiographs were prepared. At the shortest labeling periods, newly formed product was confined to juxtanuclear Schwann cell cytoplasm, in association with regions rich in Golgi apparatus. After longer labeling periods, silver grain levels in Schwann cell cytoplasm decreased; concomitantly, there was an increase of silver grains associated with myelin. In adult animals, label associated with myelin was concentrated over outer layers of thickly myelinated fibers. Even at the longest time intervals examined (72 and 98 days), this distribution of label was largely retained. In contrast, in developing animals, label became associated with inner layers of the thicker sheaths. At no time was label observed over axons. Gel electrophoresis revealed that tritiated fucose was a suitable precursor for the faster migrating peripheral nerve glycoprotein(s). At all times examined, there was a single major peak of radioactivity that co-migrated on sodium dodecyl sulfate (SDS) acrylamide gels with the Po protein. Sometimes, a faster migrating shoulder of radioactivity was noted. With increased labeling periods, there was an enrichment of radioactivity associated with Po, indicative of a relatively slow turnover rate.  相似文献   

10.
Monospecific antibodies were prepared to a previously characterized chondroitin sulfate proteoglycan of brain and used in conjunction with the peroxidase-antiperoxidase technique to localize the proteoglycan by immunoelectron microscopy. The proteoglycan was found to be exclusively intracellular in adult cerebellum, cerebrum, brain stem, and spinal cord. Some neurons and astrocytes (including Golgi epithelial cells and Bergmann fibers) showed strong cytoplasmic staining. Although in the central nervous system there was heavy axoplasmic staining of many myelinated and unmyelinated fibers, not all axons stained. Staining was also seen in retinal neurons and glia (ganglion cells, horizontal cells, and Muller cells), but several central nervous tissue elements were consistently unstained, including Purkinje cells, oligodendrocytes, myelin, optic nerve axons, nerve endings, and synaptic vesicles. In sympathetic ganglion and peripheral nerve there was no staining of neuronal cell bodies, axons, myelin, or Schwann cells, but in sciatic nerve the Schwann cell basal lamina was stained, as was the extracellular matrix surrounding collagen fibrils. Staining was also observed in connective tissue surrounding the trachea and in the lacunae of tracheal hyaline cartilage. These findings are consistent with immunochemical studies demonstrating that antibodies to the chondroitin sulfate proteoglycan of brain also cross-react to various degrees with certain connective tissue proteoglycans.  相似文献   

11.
神经退变和再生的构筑变化   总被引:4,自引:0,他引:4  
将夹伤的大鼠坐骨神经分离成单根纤维,观察98d内轴突和许旺细胞的构筑变化过程发现,损伤既使轴浆转运阻断、积累的细胞器退变,也使髓鞘板层,特别是斯兰氏切迹撕裂、变形或侵入轴突。轴突或髓鞘虽可各呈单一的退变,但以两者并存多见。伤后1d即出现富含微管的再生芽,它被增殖的许旺细胞突起及其基底膜包绕,并逐步发育成熟。根据再生的特征性构筑变化,提出了再生芽、无髓和有髓纤维、斯兰氏切迹、朗氏结与神经小束的初见、发育和成熟高峰期的时间顺序。无髓纤维的发育成熟早于有髓纤维。  相似文献   

12.
Abstract: Following nerve crush, cholesterol from degenerating myelin is conserved and reutilized for new myelin synthesis during nerve regeneration. The possibility that other myelin lipids are salvaged and reutilized has not been investigated previously. We examined the fate of myelin phospholipids and their fatty acyl moieties following nerve crush by electron microscopic autoradiography of myelin lipids prelabeled with [3H]oleate or [2-3H]-glycerol. Both precursors were incorporated predominantly (>90%) into phospholipids; >85% of the [3H]oleate was incorporated as oleate, with the remainder in longer-chain fatty acids. Before nerve crush, both labels were restricted to myelin sheaths. Following nerve crush and subsequent regeneration, over half the label from [3H]oleate, but little from [2-3H]glycerol, remained in nerve. The oleate label was present as fatty acyl moieties in phospholipids and was localized to newly formed myelin sheaths. Among the extracellular soluble lipids within the degenerating nerve, the bulk of the labeled phospholipids floated at the same density as lipoprotein particles. These data indicate that myelin phospholipids are completely hydrolyzed during nerve degeneration, that at least half the resultant free fatty acids are salvaged and reutilized for new myelin synthesis, and that these salvaged fatty acids are transported by a lipoprotein-mediated mechanism similar to that functioning in cholesterol reutilization.  相似文献   

13.
The myelin of the peripheral nervous system from the shiverer mutant mice is characterized by the absence of myelin basic protein, while the other myelin protein components are present at normal levels. Myelin lamella formation is normal in the shiverer mutant. Therefore, by using antiserum against myelin basic protein, we can distinguish the shiverer from the wild-type control myelin immunohistochemically. To study the cell lineage of Schwann cells, chimeras produced by the aggregation of eight-cell embryos from wild-type mice and shiverer mice have been used. Using myelin basic protein as a marker, it was observed that Schwann cells in the sciatic nerve existed as patches of cells with like-genotype. The patches occurred in a linear array along the axons with some intermingling of Schwann cells. Complete randomization by intermingling of Schwann cells was not observed and clones of Schwann cells may persist as contiguous groups throughout peripheral nerve development.  相似文献   

14.
15.
The morphology of the pudendal nerve was quantified in adult male and female rats. The sensory branch of the pudendal nerve was about three times as large in cross section in males as in females, and the motor branch was about five times as large. Electron microscopy was used to determine the ultrastructural bases of these gross size differences. Differences that were found included greater packing density of both myelinated and unmyelinated axons in females, larger myelinated and unmyelinated axons in males, larger myelin sheaths of sensory axons in males, more numerous myelinated axons in both branches of males, and more numerous unmyelinated axons in the sensory branch of males. There was also some indication that myelinated sensory axons were more likely to branch in the dorsal clitoral nerve of females than in the homologous nerve of males. Morphological differences in the structure of pudendal axons, their associated Schwann cells, and the extracellular matrix as well as differences in sensory and motor axonal number all have potential implications for the sexual differentiation of the central nervous system and behavior.  相似文献   

16.
In the sciatic nerve, two major classes of Schwann cells are present which differ in their capability to produce myelin. Myelinating Schwann cells surround most of the axons with the formation of a typical myelin sheath. Nonmyelinating Schwann cells serve to insulate individual axons without formation of myelin. These dissimilarities between the two types of Schwann cells provided an interesting model for studying mechanisms underlying myelination and the formation of contacts between axons and myelinating cells. It is demonstrated here that the endogenous lectin cerebellar soluble lectin (CSL), implicated in myelin stabilization and in formation of contact between axon and myelinating cells in the CNS and in the sciatic nerve, is undetectable in non-myelinating Schwann cells. In contrast, most axons surrounded by these cells contained the major axonal glycoprotein ligand of CSL, a 31-kDa glycoprotein which is present in large amounts. The possible relationship between the presence of CSL in Schwann cells and their capacity to interact with axons and to produce myelin are discussed.  相似文献   

17.
In the optic nerve of Anurans numerous myelinated and unmyelinated axons appear under the electron microscope as compact bundles that are closely bounded by one or several glial cells. In these bundles the unmyelinated fibers (0.15 to 0.6 µ in diameter) are many times more numerous than the myelinated fibers, and are separated from each other, from the bounding glial cells, or from adjacent myelin sheaths, by an extracellular gap that is 90 to 250 A wide. This intercellular space is continuous with the extracellular space in the periphery of the nerve through the numerous mesaxons and cell boundaries which reach the surface. Numerous desmosomes reinforce the attachments of adjacent glial membranes. The myelinated axons do not follow any preferential course and, like the unmyelinated ones, have a sinuous path, continuously shifting their relative position and passing from one bundle to another. At the nodes of Ranvier they behave entirely like unmyelinated axons in their relations to the surrounding cells. At the internodes they lie between the unmyelinated axons without showing an obvious myelogenic connection with the surrounding glial cells. In the absence of connective tissue separating individual myelinated fibers and with each glial cell simultaneously related to many axons, this myelogenic connection is highly distorted by other passing fibers and is very difficult to demonstrate. However, the mode of ending of the myelin layers at the nodes of Ranvier and the spiral disposition of the myelin layers indicate that myelination of these fibers occurs by a process similar to that of peripheral nerves. There are no incisures of Schmidt-Lantermann in the optic myelinated fibers.  相似文献   

18.
We have investigated the metabolic turnover of axonally transported phospholipids in myelinated axons (optic tract) and nerve endings (superior colliculus) of retinal ganglion cells. One week following intraocular injection of [2-3H]glycerol, turnover rates for individual phospholipid classes in the retina (which contains a number of other cell types in addition to the ganglion cells) were all very similar to each other, with apparent half-lives of approximately 7 days. Apparent half-lives of labeled phospholipids in superior colliculus (presumably primarily in retinal ganglion cell nerve endings) were 10 days for both choline and inositol phosphoglycerides and 13 days for both serine and diacylethanolamine phosphoglycerides. Subcellular fractionation data obtained from superior colliculus at various times after injection suggested that apparent turnover rates determined for nerve ending phospholipids probably were not significantly affected by transfer of axonally transported 3H lipids into myelin. Apparent half-lives for phospholipids in optic tract were somewhat longer than in superior colliculus, ranging from 11 to 18 days. The slower turnover rates in optic tract may, in part, reflect the transfer of some axonal lipids to the more metabolically stable pool of lipids in the myelin ensheathing the retinal ganglion cell axons. In both optic tract and superior colliculus, apparent half-lives for axonally transported phospholipids labeled with [32P]phosphate were only slightly longer than for [2-3H]glycerol, while those for [14C]choline and [3H]acetate were markedly longer, indicating differing degrees of metabolic conservation or reutilization of these precursors relative to glycerol.  相似文献   

19.
《The Journal of cell biology》1986,103(6):2439-2448
The cellular and subcellular localization of the neural cell adhesion molecules L1, N-CAM, and myelin-associated glycoprotein (MAG), their shared carbohydrate epitope L2/HNK-1, and the myelin basic protein (MBP) were studied by pre- and post-embedding immunoelectron microscopic labeling procedures in developing mouse sciatic nerve. L1 and N-CAM showed a similar staining pattern. Both were localized on small, non-myelinated, fasciculating axons and axons ensheathed by non- myelinating Schwann cells. Schwann cells were also positive for L1 and N-CAM in their non-myelinating state and at the onset of myelination, when the Schwann cell processes had turned approximately 1.5 loops. Thereafter, neither axon nor Schwann cell could be detected to express the L1 antigen, whereas N-CAM was found in the periaxonal area and, more weakly, in compact myelin of myelinated fibers. Compact myelin, Schmidt-Lanterman incisures, paranodal loops, and finger-like processes of Schwann cells at nodes of Ranvier were L1-negative. At the nodes of Ranvier, the axolemma was also always L1- and N-CAM-negative. The L2/HNK-1 carbohydrate epitope coincided in its cellular and subcellular localization most closely to that observed for L1. MAG appeared on Schwann cells at the time L1 expression ceased. MAG was then expressed at sites of axon-myelinating Schwann cell apposition and non-compacted loops of developing myelin. When compaction of myelin occurred, MAG remained present only at the axon-Schwann cell interface; Schmidt- Lanterman incisures, inner and outer mesaxons, and paranodal loops, but not at finger-like processes of Schwann cells at nodes of Ranvier or compacted myelin. All three adhesion molecules and the L2/HNK-1 epitope could be detected in a non-uniform staining pattern in basement membrane of Schwann cells and collagen fibrils of the endoneurium. MBP was detectable in compacted myelin, but not in Schmidt-Lanterman incisures, inner and outer mesaxon, paranodal loops, and finger-like processes at nodes of Ranvier, nor in the periaxonal regions of myelinated fibers, thus showing a complementary distribution to MAG. These studies show that axon-Schwann cell interactions are characterized by the sequential appearance of cell adhesion molecules and MBP apparently coordinated in time and space. From this sequence it may be deduced that L1 and N-CAM are involved in fasciculation, initial axon-Schwann cell interaction, and onset of myelination, with MAG to follow and MBP to appear only in compacted myelin. In contrast to L1, N- CAM may be further involved in the maintenance of compact myelin and axon-myelin apposition of larger diameter axons.  相似文献   

20.
The localization of the neural cell adhesion molecules L1, N-CAM, and the myelin-associated glycoprotein was studied by pre- and postembedding staining procedures at the light and electron microscopic levels in transected and crushed adult mouse sciatic nerve. During the first 2-6 d after transection, myelinated and nonmyelinated axons degenerated in the distal part of the proximal stump close to the transection site and over the entire length of the distal part of the transected nerve. During this time, regrowing axons were seen only in the proximal, but not in the distal nerve stump. In most cases L1 and N-CAM remained detectable at cell contacts between nonmyelinating Schwann cells and degenerating axons as long as these were still morphologically intact. Similarly, myelin-associated glycoprotein remained detectable in the periaxonal area of the degenerating myelinated axons. During and after degeneration of axons, nonmyelinating Schwann cells formed slender processes which were L1 and N-CAM positive. They resembled small-diameter axons but could be unequivocally identified as Schwann cells by chronical denervation. Unlike the nonmyelinating Schwann cells, only few myelinating ones expressed L1 and N-CAM. At the cut ends of the nerve stumps a cap developed (more at the proximal than at the distal stump) that contained S-100-negative and fibronectin-positive fibroblast-like cells. Most of these cells were N-CAM positive but always L1 negative. Growth cones and regrowing axons expressed N-CAM and L1 at contact sites with these cells. Regrowing axons of small diameter were L1 and N-CAM positive where they made contact with each other or with Schwann cells, while large-diameter axons were only poorly antigen positive or completely negative. 14 d after transection, when regrowing axons were seen in the distal part of the transected nerve, regrowing axons made L1- and N-CAM-positive contacts with Schwann cells. When contacting basement membrane, axons were rarely found to express L1 and N-CAM. Most, if not all, Schwann cells associated with degenerating myelin expressed L1 and N-CAM. In crushed nerves, the immunostaining pattern was essentially the same as in the cut nerve. During formation of myelin, the sequence of adhesion molecule expression was the same as during development: L1 disappeared and N-CAM was reduced on myelinating Schwann cells and axons after the Schwann cell process had turned approximately 1.5 loops around the axon. Myelin-associated glycoprotein then appeared both periaxonally and on the turning loops of Schwann cells in the uncompacted myelin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号