首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The control of metazoan cell proliferation, a problem long the domain of cell culture studies, is now being examined in developing animals. Surprisingly, developmental regulation is mediated at a variety of cell-cycle stages. Highly conserved cell-cycle control mechanisms provide a focus for studying the regulatory processes involved.  相似文献   

4.
Gossypin is a flavone that was originally isolated from Hibiscus vitifolius and has traditionally been used for the treatment of diabetes, jaundice, and inflammation. Recently, gossypin was found to have potent anticancer properties; however, its effect on human gliomas still remain unknown. To investigate the potential anticancer effects of gossypin on malignant gliomas and analyze the associated molecular mechanisms, we treated human glioma U251 cells with gossypin. Our study showed that the treatment of U251 cells with gossypin inhibited cell proliferation in a dose- and time-dependent manner and was observed to be minimally toxic to normal human astrocytes. Gossypin's effect on cell cycle distribution was observed, and we found that it induced G2/M-phase arrest in U251 cells. An analysis of cell-cycle regulatory proteins indicated that the arresting effect of gossypin on the cell cycle at G2/M phase was involved in the phosphorylation of cell division cycle 25C (Cdc25C) tyrosine phosphatase via the activation of checkpoint kinase 1 (Chk1). These findings indicate that gossypin is a potential treatment of gliomas because of gossypin's potential to regulate the proliferation of U251 cells via the cell-cycle regulatory proteins Chk1 and Cdc25C.  相似文献   

5.
6.
Malignant gliomas are aggressive and highly invasive tumors. Various genetic and epigenetic changes are common for these tumors. Mostly they concern the genes involved in cell-cycle regulation, apoptotic pathways, cell invasion, angiogenesis, and cell metabolism. The role of epigenetic mechanisms in glioma malignant transformation, despite recent progress, is uncertain and remains under intense study. This review describes the mechanisms of epigenetic regulation of gene expression, including posttranslational modifications of histones, DNA methylation in promoter regions, and microRNA regulation. The genetic and epigenetic factors driving the pathogenesis of gliomas in their possible mutual influence and the potential epigenetic targets that can be used for diagnostics and new therapeutic approaches are also discussed.  相似文献   

7.
8.
9.
线粒体拥有自身独特的核糖体--线粒体核糖体,用于翻译线粒体DNA(mitochondrial DNA, mtDNA)编码的基因。线粒体核糖体由核基因编码的线粒体核糖体蛋白质(mitochondrial ribosomal protein, MRPs)和线粒体自身编码的rRNA组装而成。MRPs表达失调会引发代谢紊乱、呼吸链受损,导致细胞发生功能障碍和异常增殖,甚至发生癌变等恶性转化。大量研究证明,MRPs在不同的肿瘤细胞中表达异常,提示着MRPs在肿瘤发生发展过程中发挥着重要作用。本文就线粒体核糖体蛋白质与人类恶性肿瘤发生的关系作一综述,为进一步阐明其在恶性肿瘤发生过程中的作用机制奠定基础。  相似文献   

10.
Here we identify the humpty dumpty (humdy) mouse mutant with failure to close the neural tube and optic fissure, causing exencephaly and retinal coloboma, common birth defects. The humdy mutation disrupts Phactr4, an uncharacterized protein phosphatase 1 (PP1) and actin regulator family member, and the missense mutation specifically disrupts binding to PP1. Phactr4 is initially expressed in the ventral cranial neural tube, a region of regulated proliferation, and after neural closure throughout the dorsoventral axis. humdy embryos display elevated proliferation and abnormally phosphorylated, inactive PP1, resulting in Rb hyperphosphorylation, derepression of E2F targets, and abnormal cell-cycle progression. Exencephaly, coloboma, and abnormal proliferation in humdy embryos are rescued by loss of E2f1, demonstrating the cell cycle is the key target controlled by Phactr4. Thus, Phactr4 is critical for the spatially and temporally regulated transition in proliferation through differential regulation of PP1 and the cell cycle during neurulation and eye development.  相似文献   

11.
Trophoblast cells of the human placenta proliferate, migrate, and invade the pregnant uterus and its vasculature in order to nourish the developing fetus, in a way that is imitated by malignant tumors. Many similarities exist between embryo implantation and the growth of cancer cells. We begin this article by reviewing decades of studies that have helped unearth the mechanisms that contribute to the tumor-like phenotype of human trophoblast cells. Interestingly, these attributes are only transient in nature, with stringent spatial and temporal confines. The importance of intrinsic molecular controls that effectively circumscribe the extent and duration of trophoblast incursion, becomes increasingly evident in abnormal pregnancies that are characterized by aberrant trophoblast proliferation/invasion. We summarize and discuss the significance of abnormalities in these regulatory mechanisms, and finally, speculate about the use of human trophoblastic cells as model systems for the study of a variety of cellular processes. While on one hand, human placental cells are bestowed with a capacity to proliferate indefinitely and invade extensively, on the other, these cells are also replete with mechanisms to regulate these tumor-like attributes and eventually progress to a senescent apoptotic state. This is therefore, a 'well-behaved' tumor. The comparison in the present review is between the invasive cytotrophoblastic cell type and the tumor cell type.  相似文献   

12.
Coordinated regulation of cell proliferation is vital for epithelial tissue homeostasis, and uncontrolled proliferation is a hallmark of carcinogenesis. A growing body of evidence indicates that epithelial tight junctions (TJs) play a role in these processes, although the mechanisms involved are poorly understood. In this study, we identify and characterize a novel plasma membrane pool of cyclin D1 with cell-cycle regulatory functions. We have determined that the zonula occludens (ZO) family of TJ plaque proteins sequesters cyclin D1 at TJs during mitosis, through an evolutionarily conserved class II PSD-95, Dlg, and ZO-1 (PDZ)-binding motif within cyclin D1. Disruption of the cyclin D1/ZO complex through mutagenesis or siRNA-mediated suppression of ZO-3 resulted in increased cyclin D1 proteolysis and G(0)/G(1) cell-cycle retention. This study highlights an important new role for ZO family TJ proteins in regulating epithelial cell proliferation through stabilization of cyclin D1 during mitosis.  相似文献   

13.
14.
15.
16.
Engel I  Murre C 《The EMBO journal》2004,23(1):202-211
E2A proteins regulate multiple stages of thymocyte development and suppress T-cell lymphoma. The activity of E2A proteins throughout thymocyte development is modulated by signals emanating from the pre-TCR and TCR. Here we demonstrate that E2A is required for the complete arrest in both differentiation and proliferation observed in thymocytes with defects in proteins that mediate pre-TCR signaling, including LAT, Lck and Fyn. We show that E2A proteins are required to prevent the accumulation of TCRbeta negative cells beyond the pre-TCR checkpoint. E2A-deficient thymocytes also exhibit abnormal cell-cycle progression prior to pre-TCR expression. Furthermore, we demonstrate that E47 can act in concert with Bcl-2 to induce cell-cycle arrest in vitro. These observations indicate that E2A proteins function during early thymocyte development to block cell-cycle progression prior to the expression of TCRbeta. In addition, these data provide further insight into how deficiencies in E2A lead to T lymphoma.  相似文献   

17.
Knockout studies have shown that the polycomb gene Bmi-1 is important for postnatal, but not embryonic, neural stem cell (NSC) self-renewal and have identified the cell-cycle inhibitors p16/p19 as molecular targets. Here, using lentiviral-delivered shRNAs in vitro and in vivo, we determined that Bmi-1 is also important for NSC self-renewal in the embryo. We found that neural progenitors depend increasingly on Bmi-1 for proliferation as development proceeds from embryonic through adult stages. Acute shRNA-mediated Bmi-1 reduction causes defects in embryonic and adult NSC proliferation and self-renewal that, unexpectedly, are mediated by a different cell-cycle inhibitor, p21. Gene array analyses revealed developmental differences in Bmi-1-controlled expression of genes in the p21-Rb cell cycle regulatory pathway. Our data therefore implicate p21 as an important Bmi-1 target in NSCs, potentially with stage-related differences. Understanding stage-related mechanisms underlying NSC self-renewal has important implications for development of stem cell-based therapies.  相似文献   

18.
Normal cell-cycle progression is a crucial task for every multicellular organism, as it determines body size and shape, tissue renewal and senescence, and is also crucial for reproduction. On the other hand, dysregulation of the cell-cycle progression leading to uncontrolled cell proliferation is the hallmark of cancer. Therefore, it is not surprising that it is a tightly regulated process, with multifaceted and very complex control mechanisms. It is now well established that one of those mechanisms relies on ion channels, and in many cases specifically on potassium channels. Here, we summarize the possible mechanisms underlying the importance of potassium channels in cell-cycle control and briefly review some of the identified channels that illustrate the multiple ways in which this group of proteins can influence cell proliferation and modulate cell-cycle progression.  相似文献   

19.
Accepted as a malignant tumor worldwide, cervical cancer (CC) has attracted much attention for its high incidence and mortality rates. Previous studies have elucidated the critical regulatory function that long noncoding RNAs (lncRNAs) exert on the tumorigenesis and progression of diverse tumors. Although multiple investigations have depicted that LINC00958 has a great impact on the complex biological process of many cancers, knowledge concerning the regulatory role of LINC00958 in CC remains limited and needs to be further explored. In our study, LINC00958 expression was evidently overexpressed in CC tissues and cells. Besides this, LINC00958 negatively regulated miR-625-5p expression and was verified to bind with miR-625-5p in CC. Subsequently, it was testified by a series of experiments that LINC00958 promotes CC cell proliferation and metastasis by sponging miR-625-5p. Furthermore, the leucine-rich repeat containing the eight family member E (LRRC8E) could bind with miR-625-5p, and its expression was negatively modulated by miR-625-5p, whereas positively regulated by LINC00958 in CC. Final rescue assays verified the effects of LINC0095/LRRC8E interaction and miR-625-5p/LRRC8E interaction on CC cell proliferation and metastasis. Collectively, LINC00958 facilitates CC cell proliferation and metastasis via the miR-625-5p/LRRC8E axis.  相似文献   

20.
Genetic defects of the zygote, such as chromosome aberrations, are the most frequent causes of abnormal embryonic development and spontaneous abortion. However, the underlying mechanisms remain unknown. Chromosome aberrations likely cause changes in placental morphology and function (such as size, shape, vascularity, and the presence of trophoblastic inclusion). We postulated that chromosome aberrations may affect rates of cell proliferation or programmed cell death (apoptosis) during the differentiation of chorionic villi. To address these questions, we evaluated cell proliferation using a monoclonal antibody to Ki-67 (a cell-cycle marker) and apoptosis using the in situ end-labeling method (TUNEL) on paraffin-embedded placental tissues. Tissues were obtained from spontaneous abortions in early gestational periods with normal (11 cases) and abnormal karyotypes (15 cases), as well as eight normal control placentas from elective abortions. Apoptotic cells were found in the stroma of all cases, but were significantly higher in number in the stroma of chromosomally abnormal versus chromosomally normal spontaneous abortions. The apoptotic index of the trophoblasts was not significantly different between groups. Cell proliferation was higher in muscularized blood vessels in chromosomally normal placentas (both elective and spontaneous abortions) versus chromosomally abnormal spontaneous abortions. Cell proliferation was different in the trophoblast and stroma between the groups but to a lesser degree than in blood vessels. The morphological and biological data presented here suggest that: (1) chromosomally abnormal spontaneous abortions may occur because of different mechanisms than chromosomally normal spontaneous abortions, (2) apoptosis of the stromal cells and cell proliferation in blood vessels and stroma play an important role in the differentiation and functioning of villi, and (3) these changes could explain the etiology of spontaneous abortion and growth retardation of chromosomally abnormal embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号