首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Renal failure causes multiple physiological changes involving CNS dysfunction. In cases of uremia, there is close correlation between plasma levels of uremic toxins [e.g. 3-carboxy-4-methyl-5-propyl-2-furanpropionate (CMPF), hippurate (HA) and indoleacetate (IA)] and the degree of uremic encephalopathy, suggesting that uremic toxins are involved in uremic encephalopathy. In order to evaluate the relevance of uremic toxins to CNS dysfunction, we investigated directional transport of uremic toxins across the blood-brain barrier (BBB) using in vivo integration plot analysis and the brain efflux index method. We observed saturable efflux transport of [(3)H]CMPF, [(14)C]HA and [(3)H]IA, which was inhibited by probenecid. For all uremic toxins evaluated, apparent efflux clearance across the BBB was greater than apparent influx clearance, suggesting that these toxins are predominantly transported from the brain to blood across the BBB. Saturable efflux transport of [(3)H]CMPF, [(14)C]HA and [(3)H]IA was completely inhibited by benzylpenicillin, which is a substrate of rat organic anion transporter 3 (rOat3). Taurocholate and digoxin, which are common substrates of rat organic anion transporting polypeptide (rOatp), partially inhibited the efflux of [(3)H]CMPF. Transport experiments using a Xenopus laevis oocyte expression system revealed that CMPF, HA and IA are substrates of rOat3, and that CMPF (but not HA or IA) is a substrate of rOap2. These results suggest that rOat3 mediates brain-to-blood transport of uremic toxins, and that rOatp2 is involved in efflux of CMPF. Thus, conditions typical of uremia can cause inhibition of brain-to-blood transport involving rOat3 and/or rOatp2, leading to accumulation of endogenous metabolites and drugs in the brain.  相似文献   

2.
血脑屏障与脑药物转运   总被引:11,自引:1,他引:10  
血脑屏障的存在使大分子药物难以进入脑中发挥疗效。成为中枢神经系统疾病治疗的瓶颈。本就血脑屏障的结构特点、大分子药物转运入脑的途径及药物与载体间的连接策略等问题进行了综述。  相似文献   

3.
The blood-brain barrier (BBB) efflux transport of [(14)C] adenosine was studied using the brain efflux index (BEI) technique. BEI increased linearly over the first 2 min after injection, with deviation from linearity thereafter; 90.12 +/- 1.5% of the injected [(14)C] radioactivity remained within the brain after 20 min. The remaining tracer appears to be mainly intracellular, trapped by phosphorylation, as an almost linear increase of BEI over 20 min was observed after intracerebral injection of [(14)C] adenosine together with 5-iodo tubercidin. The BBB efflux clearance of [(14)C] radioactivity was estimated to be 27.62 +/- 5.2 micro L/min/g, almost threefold higher than the BBB influx clearance estimated by the brain uptake index technique. High-performance liquid chromatography (HPLC) analysis of blood plasma collected from the jugular vein after the intracerebral injection revealed metabolic breakdown of [(14)C] adenosine into nucleobases. The BBB efflux transport was saturable with apparent K(m) = 13.22 +/- 1.75 micro m and V(max) = 621.07 +/- 71.22 pmole/min/g, which indicated that BBB efflux in vivo is 6.2-12p mole/min/g, negligible when compared to the reported rate of adenosine uptake into neurones/glia. However, these kinetic parameters also suggest that under conditions of elevated ISF adenosine in hypoxia/ischaemia, BBB efflux transport could increase up to 25% of the uptake into neurones/glia and become an important mechanism to oppose the rise in ISF concentration. HPLC-fluorometry detected 93.6 +/- 5.25 nm of adenosine in rat plasma, which is 17- to 220-fold lower than the reported K(m) of adenosine BBB influx in rat. Together with the observed rapid degradation inside endothelial cells, this indicated negligible BBB influx of intact adenosine under resting conditions. Cross-inhibition studies showed that unlabelled inosine, adenine and hypoxanthine caused a decrease in BBB efflux of [(14)C] radioactivity in a concentration-dependent manner, with K(i) of 16.7 +/- 4.88, 65.1 +/- 14.1 and 71.1 +/- 16.9 micro m, respectively. This could be due to either competition of unlabelled molecules with [(14)C] adenosine or competition with its metabolites hypoxanthine and adenine for the same transport sites.  相似文献   

4.
Music plays a more important role in our life than just being an entertainment. For example, it can be used as an anti-anxiety therapy of human and animals. However, the unsafe listening of loud music triggers hearing loss in millions of young people and professional musicians (rock, jazz and symphony orchestra) owing to exposure to damaging sound levels using personal audio devices or at noisy entertainment venues including nightclubs, discotheques, bars and concerts. Therefore, it is important to understand how loud music affects us. In this pioneering study on healthy mice, we discover that loud rock music below the safety threshold causes opening of the blood-brain barrier (OBBB), which plays a vital role in protecting the brain from viruses, bacteria and toxins. We clearly demonstrate that listening to loud music during 2 h in an intermittent adaptive regime is accompanied by delayed (1 h after music exposure) and short-lasting to (during 1–4 h) OBBB to low and high molecular weight compounds without cochlear and brain impairments. We present the systemic and molecular mechanisms responsible for music-induced OBBB. Finally, a revision of our traditional knowledge about the BBB nature and the novel strategies in optimizing of sound-mediated methods for brain drug delivery are discussed.  相似文献   

5.
The unidirectional influx of hypoxanthine across cerebral capillaries, the anatomical locus of the blood=brain barrier, was measured with an in situ rat brain perfusion technique employing [3H]hypoxanthine. Hypoxanthine was transported across the blood-brain barrier by a saturable system with a one-half saturation concentration of approximately 0.4 mM. The permeability-surface area product was 3×10–4 sec–1 with a hypoxanthine concentration of 0.02 M in the perfusate. Adenine (4 mM) and uracil and theophylline (both 10 mM), but not inosine (10 mM) or leucine (1 mM), inhibited hypoxanthine transfer through the blood-brain barrier. Thus, hypoxanthine is transported through the blood-brain barrier by a high-capacity, saturable transport system with a half-saturation concentration about 100 times the plasma hypoxanthine concentration. Although involved in the transport hypoxanthine from blood into brain, this system is not powerful enough to transfer important quantities of hypoxanthine from blood into brain.  相似文献   

6.
Porcine brain capillary endothelial cells (PBCEC) cultured in serum-free and hydrocortisone supplemented medium are characterised by high transendothelial electrical resistances and low cell monolayer permeabilities for small solutes very similar to the blood-brain barrier (BBB) in vivo. Differential screening of a subtracted cDNA library disclosed a 2.1-kb mRNA that is overexpressed in hydrocortisone treated PBCEC relative to untreated cells. The mRNA encodes a 656-aa member of the ATP-binding cassette (ABC) superfamily of transporters that we named brain multidrug resistance protein (BMDP). Phylogenetic analysis and multiple sequence alignment showed that porcine BMDP is most related to the human and mouse breast cancer resistance protein (BCRP). Northern blot analysis revealed that BMDP is expressed in brain tissue in vivo and was predominantly localised within the endothelial cells isolated from brain capillaries. Thus, we identified a new transport protein at the BBB that might play an important role in the exclusion of xenobiotics from the brain.  相似文献   

7.
炎症小体在机体血脑屏障损伤中的作用机制研究进展   总被引:1,自引:0,他引:1  
贾凯翔  曹芯蕊  方仁东 《微生物学报》2022,62(12):4798-4810
血脑屏障(blood-brain barrier,BBB)是一种天然的结构和功能屏障,可抑制病原体的进入并严格控制分子进入脑实质,完整的血脑屏障对于维持中枢神经系统内稳态至关重要。这一屏障功能是由特殊的多细胞结构决定的,每一种组成的细胞类型对血脑屏障的完整性都有不可或缺的贡献。炎症小体(inflammasome)是先天免疫系统最重要的组成部分之一,是一种多蛋白复合体。当病原侵入或机体产生过度免疫反应时,能够激活炎症小体并介导大量细胞因子以及趋化因子分泌。细胞因子及趋化因子表达上调会引起血脑屏障破坏,导致病原突破血脑屏障进入中枢神经系统,引发机体各种脑内疾病。本文就感染性疾病与非感染性疾病这两种情况下,对炎症小体介导机体血脑屏障的损伤进行综述,并列举了当前针对血脑屏障损伤的不同修复方式。  相似文献   

8.
《Developmental cell》2021,56(19):2712-2721.e4
  1. Download : Download high-res image (149KB)
  2. Download : Download full-size image
  相似文献   

9.
We previously found that RBE4.B brain capillary endothelial cells (BCECs) form a layer with blood-brain barrier (BBB) properties if co-cultured with neurons for at least one week. As astrocytes are known to modulate BBB functions, we further set a culture system that included RBE4.B BCECs, neurons and astrocytes. In order to test formation of BBB, we measured the amount of 3H-sucrose able to cross the BCEC layer in this three-cell type model of BBB. Herein we report that both neurons and astrocytes induce a decrease in the permeability of the BCEC layer to sucrose. These effects are synergic as if BCECs are cultured with both neurons and astrocytes for 5 days, permeability to sucrose decreases even more. By Western analysis, we also found that, in addition to the canonical 60 kDa occludin, anti-occludin antibodies recognize a smaller protein of 48 kDa which accumulates during rat brain development. Interestingly this latter protein is present at higher amounts in endothelial cells cultured in the presence of both astrocytes and neurons, that is in those conditions in which sucrose permeation studies indicate formation of BBB.  相似文献   

10.
Summary Early passage bovine brain capillary endothelial cells were immortalized by transfection with the plasmid pSV3 neo. Cells from one clone, SV-BEC, expressed nuclear SV 40 large T antigen, displayed a contact-inhibited and anchorage-dependent proliferation, and a high sensitivity to the addition of exogenous basic fibroblast growth factor. SV-BEC cells are morphologically unaltered and express typical markers of endothelial cells: Factor VIII-related antigen, angiotensin-converting enzyme andGriffonia simplicifolia agglutinin binding site. Endothelium like immunoreactivity was detected in the conditioned medium from these cells. Moreover, SV-BECs present numerous intercellular tight junctions characteristic of the blood-brain barrier and possess functionalβ1- andβ2-adrenergic receptors, as observed on isolated bovine brain capillaries.  相似文献   

11.
12.
The in vivo rat brain microdialysis technique with HPLC/UV was used to determine the blood-brain barrier (BBB) penetration of pralidoxime iodide (2-PAM), which is a component of the current nerve agent antidote therapy. After intravenous dosage of 2-PAM (10, 50, 100 mg/kg), 2-PAM appeared dose-dependently in the dialysate; the striatal extracellular/blood concentration ratio at 1 h after 50 mg/kg dosage was 0.093 ± 0.053 (mean ± SEM). This finding offered conclusive evidence of the BBB penetration of 2-PAM. We also examined whether the BBB penetration of 2-PAM was mediated by a certain specific transporter, such as a neutral or basic amino acid transport system. Although it was unclear, the neural uptake of 2-PAM was Na+ dependent. The mean BBB penetration by 2-PAM was approximately 10%, indicating the intravenous administration of 2-PAM might be to a degree effective to reactivation of the blocked cholinesterase in the brain.  相似文献   

13.
14.
J. Neurochem. (2012) 122, 962-975. ABSTRACT: P-glycoprotein (ABCB1/MDR1, EC 3.6.3.44), the major efflux transporter at the blood-brain barrier (BBB), is a formidable obstacle to CNS pharmacotherapy. Understanding the mechanism(s) for increased P-glycoprotein activity at the BBB during peripheral inflammatory pain is critical in the development of novel strategies to overcome the significant decreases in CNS analgesic drug delivery. In this study, we employed the λ-carrageenan pain model (using female Sprague-Dawley rats), combined with confocal microscopy and subcellular fractionation of cerebral microvessels, to determine if increased P-glycoprotein function, following the onset of peripheral inflammatory pain, is associated with a change in P-glycoprotein trafficking which leads to pain-induced effects on analgesic drug delivery. Injection of λ-carrageenan into the rat hind paw induced a localized, inflammatory pain (hyperalgesia) and simultaneously, at the BBB, a rapid change in colocalization of P-glycoprotein with caveolin-1, a key scaffolding/trafficking protein. Subcellular fractionation of isolated cerebral microvessels revealed that the bulk of P-glycoprotein constitutively traffics to membrane domains containing high molecular weight, disulfide-bonded P-glycoprotein-containing structures that cofractionate with membrane domains enriched with monomeric and high molecular weight, disulfide-bonded, caveolin-1-containing structures. Peripheral inflammatory pain promoted a dynamic redistribution between membrane domains of P-glycoprotein and caveolin-1. Disassembly of high molecular weight P-glycoprotein-containing structures within microvascular endothelial luminal membrane domains was accompanied by an increase in ATPase activity, suggesting a potential for functionally active P-glycoprotein. These results are the first observation that peripheral inflammatory pain leads to specific structural changes in P-glycoprotein responsible for controlling analgesic drug delivery to the CNS.  相似文献   

15.
血脑屏障(blood-brain barrier,BBB)是中枢神经系统(central nervous system,CNS)的天然结构和功能屏障之一,可有效阻止病原菌的入侵。然而病原菌能通过其自身毒力因子与脑内皮细胞相互作用,诱导宿主免疫应答反应,分泌大量细胞因子、趋化因子等,破坏紧密连接蛋白,最终突破血脑屏障,引起细菌性脑膜炎,产生不可逆的神经系统损伤。链球菌(Streptococcus)作为引起细菌性脑膜炎的重要病原菌,关于其突破血脑屏障分子机制研究已有显著进展。本文针对主要的链球菌,包括肺炎链球菌(Streptococcus pneumoniae)、猪链球菌(Streptococcus suis)、B型链球菌(group B Streptococcus,GBS)、马链球菌等突破血脑屏障的作用机制研究进展进行综述。  相似文献   

16.
Worldwide, more than one billion people are affected by CNS disorders. Despite the huge demand for treatments, existing drugs have limited or no efficacy for some neurological diseases, including brain cancer and certain epilepsies. Furthermore, no effective therapies are available at all for some common disorders of the central nervous system (CNS) such as Alzheimer's disease. ATP-binding cassette (ABC) transporters at the blood-brain barrier (BBB) have become increasingly important in the treatment and pathogenesis of CNS disorders. Here we highlight a novel strategy--targeting signaling pathways that control ABC transporters at the BBB--to protect the brain, improve brain drug delivery, and reduce CNS pathology.  相似文献   

17.
The authors have used an experimental rat model of chronic aluminum (Al) intoxication to reproduce pathological signs analogous to those observed in humans for Alzheimer’s disease or dialysis encephalopathy. Preliminary chronic intoxication was achieved during 5 wk by daily subcutaneous injection of a suspension of glutamate and Al prior to intravenous (iv) administration of sodiuml-glutamate and Al chloride. A significant increase in Al content was observed in different areas of the brain, such as the hippocampus, the occipito-parietal cortex, the cerebellum, and the striatum. Moreover, half of the animals subcutaneously treated with Al glutamate had neurological disturbances; such as trembling, equilibrium difficulties, and convulsions leading to death about 1 h after iv administration. A significant increase in glutamic acid at the level of the occipito-parietal cortex was found in comparison with controls, which received only sodiuml-glutamate or saline solution. These results show that the Al-l-glutamate complex may well induce a modification of the blood-brain barrier.  相似文献   

18.
Interleukin15 (IL 15) is a proinflammatory cytokine with elevated concentrations in autoimmune diseases involving the periphery (e.g. rheumatoid arthritis) and CNS (e.g. multiple sclerosis). Its interactions with the blood-brain barrier (BBB) were studied in normal and lipopolysaccharide (LPS)-treated mice. 125I-IL15 remained intact for at least 10 min after i.v. injection and reached CNS parenchyma with regional differences between brain and spinal cord. Both in vivo and in situ brain perfusion of 125I-IL15 showed that its permeation of the BBB was non-saturable. LPS induced a significant increase of IL15 uptake by the brain and spinal cord, partly related to a higher general permeability of the BBB. The results suggest that the BBB is an interface for blood-borne IL15 to interact with the CNS in the basal state and during inflammation.  相似文献   

19.
Thiamine is an essential, positively charged (under physiologic conditions), water-soluble vitamin requiring transport into brain. Brain thiamine deficiency has been linked to neurodegenerative disease by subsequent impairment of thiamine-dependent enzymes used in brain glucose/energy metabolism. In this report, we evaluate brain uptake and efflux of [3H]thiamine using the in situ rat brain perfusion technique. To confirm brain distribution was not related to blood-brain barrier endothelial cell uptake, we compared parenchymal and cell distribution of [3H]thiamine using capillary depletion. Our work supports previous literature findings suggesting blood-brain barrier thiamine uptake is via a carrier-mediated transport mechanism, yet extends the literature by redefining the kinetics with more sensitive methodology. Significantly, [3H]thiamine brain accumulation was influenced by a considerable efflux rate. Evaluation of the efflux mechanism demonstrated increased stimulation by the presence of increased vascular thiamine. The influx transport mechanism and efflux rate were each comparable throughout brain regions despite documented differences in glucose and thiamine metabolism. The observation that [3H]thiamine blood-brain barrier influx and efflux is regionally homogenous may have significant relevance to neurodegenerative disease linked to thiamine deficiency.  相似文献   

20.
Rapid transferrin efflux from brain to blood across the blood-brain barrier   总被引:4,自引:0,他引:4  
The brain efflux index method is used to examine the extent to which transferrin effluxes from brain to blood across the blood-brain barrier (BBB) following intracerebral injection. Whereas high-molecular-weight dextran is nearly 100% retained in brain for up to 90 min after intracerebral injection in the Par2 region of the parietal cortex of brain, there is rapid efflux of transferrin from brain to blood across the BBB. The efflux of apotransferrin is 3.5-fold faster than the efflux of holo-transferrin. The brain to blood efflux of apotransferrin is completely saturable by unlabeled transferrin, but is not inhibited by other plasma proteins. These studies provide evidence for reverse transcytosis of transferrin from brain to blood across the BBB. As circulating transferrin is known to undergo transcytosis across the BBB in the blood-to-brain direction, these studies support the model of bidirectional transcytosis of transferrin through the BBB in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号