首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Under secondary metabolic conditions the white rot basidiomycete Phanerochaete chrysosporium mineralizes 2,4-dichlorophenol (I). The pathway for the degradation of 2,4-dichlorophenol (I) was elucidated by the characterization of fungal metabolites and of oxidation products generated by purified lignin peroxidase and manganese peroxidase. The multistep pathway involves the oxidative dechlorination of 2,4-dichlorophenol (I) to yield 1,2,4,5-tetrahydroxybenzene (VIII). The intermediate 1,2,4,5-tetrahydroxybenzene (VIII) is ring cleaved to produce, after subsequent oxidation, malonic acid. In the first step of the pathway, 2,4-dichlorophenol (I) is oxidized to 2-chloro-1,4-benzoquinone (II) by either manganese peroxidase or lignin peroxidase. 2-Chloro-1,4-benzoquinone (II) is then reduced to 2-chloro-1,4-hydroquinone (III), and the latter is methylated to form the lignin peroxidase substrate 2-chloro-1,4-dimethoxybenzene (IV). 2-Chloro-1,4-dimethoxybenzene (IV) is oxidized by lignin peroxidase to generate 2,5-dimethoxy-1,4-benzoquinone (V), which is reduced to 2,5-dimethoxy-1,4-hydroquinone (VI). 2,5-Dimethoxy-1,4-hydroquinone (VI) is oxidized by either peroxidase to generate 2,5-dihydroxy-1,4-benzoquinone (VII) which is reduced to form the tetrahydroxy intermediate 1,2,4,5-tetrahydroxybenzene (VIII). In this pathway, the substrate is oxidatively dechlorinated by lignin peroxidase or manganese peroxidase in a reaction which produces a p-quinone. The p-quinone intermediate is then recycled by reduction and methylation reactions to regenerate an intermediate which is again a substrate for peroxidase-catalyzed oxidative dechlorination. This unique pathway apparently results in the removal of both chlorine atoms before ring cleavage occurs.  相似文献   

2.
Under secondary metabolic conditions, the lignin-degrading basidiomycete Phanerochaete chrysosporium mineralizes 2,4,6-trichlorophenol. The pathway for the degradation of 2,4,6-trichlorophenol has been elucidated by the characterization of fungal metabolites and oxidation products generated by purified lignin peroxidase (LiP) and manganese peroxidase (MnP). The multistep pathway is initiated by a LiP- or MnP-catalyzed oxidative dechlorination reaction to produce 2,6-dichloro-1,4-benzoquinone. The quinone is reduced to 2,6-dichloro-1,4-dihydroxybenzene, which is reductively dechlorinated to yield 2-chloro-1,4-dihydroxybenzene. The latter is degraded further by one of two parallel pathways: it either undergoes further reductive dechlorination to yield 1,4-hydroquinone, which is ortho-hydroxylated to produce 1,2,4-trihydroxybenzene, or is hydroxylated to yield 5-chloro-1,2,4-trihydroxybenzene, which is reductively dechlorinated to produce the common key metabolite 1,2,4-trihydroxybenzene. Presumably, the latter is ring cleaved with subsequent degradation to CO2. In this pathway, the chlorine at C-4 is oxidatively dechlorinated, whereas the other chlorines are removed by a reductive process in which chlorine is replaced by hydrogen. Apparently, all three chlorine atoms are removed prior to ring cleavage. To our knowledge, this is the first reported example of aromatic reductive dechlorination by a eukaryote.  相似文献   

3.
K Valli  H Wariishi    M H Gold 《Journal of bacteriology》1992,174(7):2131-2137
Under secondary metabolic conditions, the white-rot basidiomycete Phanerochaete chrysosporium degraded 2,7-dichlorodibenzo-p-dioxin (I). The pathway for the degradation of I was elucidated by the characterization of fungal metabolites and oxidation products generated by lignin peroxidase (LiP), manganese peroxidase (MnP), and crude intracellular cell-free extracts. The multistep pathway involves the degradation of I and subsequent intermediates by oxidation, reduction, and methylation reactions to yield the key intermediate 1,2,4-trihydroxybenzene (III). In the first step, the oxidative cleavage of the dioxin ring of I, catalyzed by LiP, generates 4-chloro-1,2-benzoquinone (V), 2-hydroxy-1,4-benzoquinone (VIII), and chloride. The intermediate V is then reduced to 1-chloro-3,4-dihydroxybenzene (II), and the latter is methylated to form 1-chloro-3,4-dimethoxybenzene (VI). VI in turn is oxidized by LiP to generate chloride and 2-methoxy-1,4-benzoquinone (VII), which is reduced to 2-methoxy-1,4-dihydroxybenzene (IV). IV is oxidized by either LiP or MnP to generate 4-hydroxy-1,2-benzoquinone, which is reduced to 1,2,4-trihydroxybenzene (III). The other aromatic product generated by the initial LiP-catalyzed cleavage of I is 2-hydroxy-1,4-benzoquinone (VIII). This intermediate is also generated during the LiP- or MnP-catalyzed oxidation of the intermediate chlorocatechol (II). VIII is also reduced to 1,2,4-trihydroxybenzene (III). The key intermediate III is ring cleaved by intracellular cell extracts to produce, after reduction, beta-ketoadipic acid. In this pathway, initial oxidative cleavage of both C-O-C bonds in I by LiP generates two quinone products, 4-chloro-1,2-benzoquinone (V) and 2-hydroxy-1,4-benzoquinone (VIII). The former is recycled by reduction and methylation reactions to generate an intermediate which is also a substrate for peroxidase-catalyzed oxidation, leading to the removal of a second chlorine atom. This unique pathway results in the removal of both aromatic chlorines before aromatic ring cleavage takes place.  相似文献   

4.
Under ligninolytic conditions, the white rot basidiomycete Phanerochaete chrysosporium mineralizes 2,4-dinitrotoluene (I). The pathway for the degradation of I was elucidated by the characterization of fungal metabolites and oxidation products generated by lignin peroxidase (LiP), manganese peroxidase (MnP), and crude intracellular cell extracts. The multistep pathway involves the initial reduction of I to yield 2-amino-4-nitrotoluene (II). II is oxidized by MnP to yield 4-nitro-1,2-benzoquinone (XII) and methanol. XII is then reduced to 4-nitro-1,2-hydroquinone (V), and the latter is methylated to 1,2-dimethoxy-4-nitrobenzene (X). 4-Nitro-1,2-hydroquinone (V) is also oxidized by MnP to yield nitrite and 2-hydroxybenzoquinone, which is reduced to form 1,2,4-trihydroxybenzene (VII). 1,2-Dimethoxy-4-nitrobenzene (X) is oxidized by LiP to yield nitrite, methanol, and 2-methoxy-1,4-benzoquinone (VI), which is reduced to form 2-methoxy-1,4-hydroquinone (IX). The latter is oxidized by LiP and MnP to 4-hydroxy-1,2-benzoquinone, which is reduced to 1,2,4-trihydroxybenzene (VII). The key intermediate 1,2,4-trihydroxybenzene is ring cleaved by intracellular cell extracts to produce, after reduction, beta-ketoadipic acid. In this pathway, initial reduction of a nitroaromatic group generates the peroxidase substrate II. Oxidation of II releases methanol and generates 4-nitro-1,2-benzoquinone (XII), which is recycled by reduction and methylation reactions to regenerate intermediates which are in turn substrates for peroxidase-catalyzed oxidation leading to removal of the second nitro group. Thus, this unique pathway apparently results in the removal of both aromatic nitro groups before ring cleavage takes place.  相似文献   

5.
Under ligninolytic conditions, the white rot basidiomycete Phanerochaete chrysosporium mineralizes 2,4-dinitrotoluene (I). The pathway for the degradation of I was elucidated by the characterization of fungal metabolites and oxidation products generated by lignin peroxidase (LiP), manganese peroxidase (MnP), and crude intracellular cell extracts. The multistep pathway involves the initial reduction of I to yield 2-amino-4-nitrotoluene (II). II is oxidized by MnP to yield 4-nitro-1,2-benzoquinone (XII) and methanol. XII is then reduced to 4-nitro-1,2-hydroquinone (V), and the latter is methylated to 1,2-dimethoxy-4-nitrobenzene (X). 4-Nitro-1,2-hydroquinone (V) is also oxidized by MnP to yield nitrite and 2-hydroxybenzoquinone, which is reduced to form 1,2,4-trihydroxybenzene (VII). 1,2-Dimethoxy-4-nitrobenzene (X) is oxidized by LiP to yield nitrite, methanol, and 2-methoxy-1,4-benzoquinone (VI), which is reduced to form 2-methoxy-1,4-hydroquinone (IX). The latter is oxidized by LiP and MnP to 4-hydroxy-1,2-benzoquinone, which is reduced to 1,2,4-trihydroxybenzene (VII). The key intermediate 1,2,4-trihydroxybenzene is ring cleaved by intracellular cell extracts to produce, after reduction, beta-ketoadipic acid. In this pathway, initial reduction of a nitroaromatic group generates the peroxidase substrate II. Oxidation of II releases methanol and generates 4-nitro-1,2-benzoquinone (XII), which is recycled by reduction and methylation reactions to regenerate intermediates which are in turn substrates for peroxidase-catalyzed oxidation leading to removal of the second nitro group. Thus, this unique pathway apparently results in the removal of both aromatic nitro groups before ring cleavage takes place.  相似文献   

6.
 The well-known and easily available horseradish peroxidase (HRP) catalyzes the H2O2-dependent oxidative 4-dechlorination of the pollutant 2,4,6-trichlorophenol, which is recalcitrant to many organisms except those producing ligninases. UV-visible spectroscopy and gas chromatography-mass spectrometry identified the oxidized reaction product as 2,6-dichloro-1,4-benzoquinone. NMR and IR spectroscopic data further supported the above characterization. Experimental evidence for the elimination of HCl from the substrate was acquired by detecting the decrease in pH of the reaction mixture, and by observing the presence of the β-chlorocyclopentadienone cation fragment in the mass spectrum of 2,6-dichloro-1,4-benzoquinone. Consequently, nucleophilic attack by water on the 2,4,6-trichlorocyclohexadienone cation was proposed to give the final product. Our results indicate an oxidative dechlorination pathway catalyzed by HRP for 2,4,6-trichlorophenol, similar to that by extracellular lignin peroxidases. The relative catalytic efficiency of HRP seems higher than that of lignin peroxidases. The HRP-H2O2 catalytic system could be utilized in the degradation of polychlorinated phenols for industrial and biotechnological purposes. Received: 20 November 1998 / Accepted: 29 January 1999  相似文献   

7.
Laccase from the white rot fungus Coriolus versicolor was immobilized on Celite R-637 by covalent binding with glutaraldehyde. After a sharp primary decline in activity (up to 50%), the retained enzyme activity was stable over a storage period of 33 days at 4 degrees C. A comparative study of soluble and immobilized laccases revealed the increased resistance of immobilized enzyme to the unfavourable effects of alkaline pH, high temperature and the action of inhibitors. A combination of these properties of immobilized laccase resulted in the ability to oxidize 2,4,6-trichlorophenol (2,4,6-TCP) at 50 degrees C at pH 7.0. The reactions of soluble and immobilized laccase with 2,4,6-TCP were examined in the presence and absence of redox mediators. 3,5-Dichlorocatechol, 2,6-dichloro-1,4-benzoquinone and 2,6-dichloro-1,4-hydroquinone were found to be the primary products of 2,4,6-TCP oxidation by laccase; oligo- and polymeric compounds were also found.  相似文献   

8.
 Degradation of tetrachloroguaiacol is catalyzed by an extracellular enzyme, the laccase of the white-rot fungus Coriolus versicolor. This enzyme catalyzes the dechlorination of tetrachloroguaiacol and release of chloride ions. The pathway for the degradation was deduced from the intermediates produced by purified laccase and 18O-labeling experiments. The first step is demethylation. The resulting tetrachlorocatechol is dechlorinated to give 2,3,5-trichloro-6-hydroxy-p-benzoquinone, 2,5-dichloro-3,6-dihydroxy-p-benzoquinone, and dichloro-6-hydroxy-p-benzoquinone. Isotopic experiments established the mechanism of dechlorination of tetrachloroguaiacol by laccase. The laccase-catalyzed dechlorination is not caused by oxidative coupling but by nucleophilic substitution in which Cl- is released by water from cation radicals generated by laccase. Received: 25 August 1995/Received revision: 27 October 1995/Accepted: 20 November 1995  相似文献   

9.
L Xun 《Journal of bacteriology》1996,178(9):2645-2649
Burkholderia (formerly Pseudomonas) cepacia AC1100 mineralizes the herbicide 2,4,5-trichlorophenoxyacetate (2,4,5-T), and the first intermediate of 2,4,5-T degradation is 2,4,5-trichlorophenol. Chlorophenol 4-monooxygenase activity responsible for 2,4,5-trichlorophenol degradation was detected in the cell extract. The enzyme consisted of two components separated during purification, and both were purified to more than 95% homogeneity. The reconstituted enzyme catalyzed the hydroxylation of several tested chlorophenols with the coconsumption of NADH and oxygen. In addition to chlorophenols, the enzyme also hydroxylated some chloro-p-hydroquinones with the coconsumption of NADH and oxygen. Apparently, the single enzyme was responsible for converting 2,4,5-trichlorophenol to 2,5-dichloro-p-hydroquinone and then to 5-chlorohydroxyquinol (5-chloro-1,2,4-trihydroxybenzene). Component A had a molecular weight of 22,000 and contained flavin adenine dinucleotide. Component A alone catalyzed NADH-dependent cytochrome c reduction, indicating that it had reductase activity. Component B had a molecular weight of 58,000, and no catalytic activity has yet been shown by itself.  相似文献   

10.
Ralstonia sp. strain PS12 is able to use 2,4-, 2,5-, and 3,4-dichlorotoluene as growth substrates. Dichloromethylcatechols are central intermediates that are formed by TecA tetrachlorobenzene dioxygenase-mediated activation at two adjacent unsubstituted carbon atoms followed by TecB chlorobenzene dihydrodiol dehydrogenase-catalyzed rearomatization and then are channeled into a chlorocatechol ortho cleavage pathway involving a chlorocatechol 1,2-dioxygenase, chloromuconate cycloisomerase, and dienelactone hydrolase. However, completely different metabolic routes were observed for the three dichloromethylcatechols analyzed. Whereas 3,4-dichloro-6-methylcatechol is quantitatively transformed into one dienelactone (5-chloro-2-methyldienelactone) and thus is degraded via a linear pathway, 3,5-dichloro-2-methylmuconate formed from 4,6-dichloro-3-methylcatechol is subject to both 1,4- and 3,6-cycloisomerization and thus is degraded via a branched metabolic route. 3,6-Dichloro-4-methylcatechol, on the first view, is transformed predominantly into one (2-chloro-3-methyl-trans-) dienelactone. In situ (1)H nuclear magnetic resonance analysis revealed the intermediate formation of 2,5-dichloro-4-methylmuconolactone, showing that both 1,4- and 3,6-cycloisomerization occur with this muconate and indicating a degradation of the muconolactone via a reversible cycloisomerization reaction and the dienelactone-forming branch of the pathway. Diastereomeric mixtures of two dichloromethylmuconolactones were prepared chemically to proof such a hypothesis. Chloromuconate cycloisomerase transformed 3,5-dichloro-2-methylmuconolactone into a mixture of 2-chloro-5-methyl-cis- and 3-chloro-2-methyldienelactone, affording evidence for a metabolic route of 3,5-dichloro-2-methylmuconolactone via 3,5-dichloro-2-methylmuconate into 2-chloro-5-methyl-cis-dienelactone. 2,5-Dichloro-3-methylmuconolactone was transformed nearly exclusively into 2-chloro-3-methyl-trans-dienelactone.  相似文献   

11.
Laccases are able to mediate both cleavage and synthesis processes. The basis for this dual reaction capability lies in the property of the enzyme laccase to oxidize phenolic, and to some extent non-phenolic substances, to reactive radicals which can undergo on the one hand separations of small substitutents or large molecule parts from the parent compound and on the other hand coupling reactions with other radicals or molecules which are not themselves oxidizable by laccase. The cleavage of the non-phenolic compound 4-morpholinoaniline as well as the deamination of 4-aminophenol and the dechlorination of 4-chlorophenol resulted in the formation of 1,4-hydroquinone which is immediately oxidized by laccase to 1,4-benzoquinone. The formation of the 1,4-hydroquinone/1,4-benzoquinone is the rate limiting step for the synthesis of the heteromolecular dimers and trimers composed of 1,4-benzoquinone and one or two molecules of morpholine. In addition to the synthesis of new compounds from the cleavage products, 4-morpholinoaniline polymerized probably via azo groups and C-N bonds to a homomolecular dimer and trimer. Similarities and differences in cleavage and synthesis reactions catalyzed by the low redox potential laccase of Myceliophthora thermophila (0.46 V) and the high redox potential laccase of Pycnoporus cinnabarinus (0.79 V) were determined. In addition, the dependency of the cleavage and synthesis efficiencies on the (a) structure and redox potential of the laccase, (b) structure and redox potential of the substrate, (c) pH value of the buffer used, (d) incubation temperature, (e) solvent concentration, and (f) laccase activity is discussed in general.  相似文献   

12.
Reductive dechlorination of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) was investigated in anaerobic sediments by non-adapted microorganisms and by microorganisms adapted to either 2,4- or 3,4-dichlorophenol (DCP). The rate of dechlorination of 2,4-D was increased by adaptation of sediment microorganisms to 2,4-DCP while dechlorination by sediment microorganisms adapted to 3,4-DCP displayed a lag phase similar to non-adapted sediment slurries. Both 2,4- and 3,4-DCP-adapted microorganisms produced 4-chlorophenoxyacetic acid by ortho-chlorine removal. Lag phases prior to dechlorination of the initial addition of 2,4,5-T by DCP-adapted sediment microorganisms were comparable to those from non-adapted sediment slurries. However, the rates of dechlorination increased upon subsequent additions of 2,4,5-T. Biodegradation of 2,4,5-T by sediment microorganisms adapted to 2,4- and/ or 3,4-DCP produced 2,5-D as the initial intermediate followed by 3-chlorophenol and phenol indicating a para > ortho > meta order of dechlorination. Dechlorination of 2,4,5-T, by either adapted or non-adapted sediment microorganisms, progressed without detection of 2,4,5-trichlorophenol as an intermediate.  相似文献   

13.
The effect of quinone herbicides and fungicides on photosynthetic reactions in isolated spinach (Spinacia oleracea) chloroplasts was investigated. 2,3-Dichloro-1,4-naphthoquinone (dichlone), 2-amino-3-chloro-1,4-naphthoquinone (06K-quinone), and 2,3,5,6-tetrachloro-1,4-benzoquinone (chloranil) inhibited ferricyanide reduction as well as ATP formation. Benzoquinone had little or no effect on these reactions. The two reactions showed a differential sensitivity to these inhibitors. Dichlone was a strong inhibitor of both photosystems I and II; photosystem I was more sensitive to 06K-quinone than was photosystem II, whereas the reverse was true of chloranil. Chloranil and 06K-quinone inhibited ferricyanide reduction and the coupled photophosphorylation to the same extent, whereas dichlone affected photophosphorylation to a greater extent than the ferricyanide reduction.  相似文献   

14.
Kerem Z  hammel  Hammel KE 《FEBS letters》1999,446(1):49-54
We have identified key components of the extracellular oxidative system that the brown rot fungus Gloeophyllum trabeum uses to degrade a recalcitrant polymer, polyethylene glycol, via hydrogen abstraction reactions. G. trabeum produced an extracellular metabolite, 2,5-dimethoxy-1,4-benzoquinone, and reduced it to 2,5-dimethoxyhydroquinone. In the presence of 2,5-dimethoxy-1,4-benzoquinone, the fungus also reduced extracellular Fe3+ to Fe2+ and produced extracellular H2O2. Fe3+ reduction and H2O2 formation both resulted from a direct, non-enzymatic reaction between 2,5-dimethoxyhydroquinone and Fe3+. Polyethylene glycol depolymerization by G. trabeum required both 2,5-dimethoxy-1,4-benzoquinone and Fe3+ and was completely inhibited by catalase. These results provide evidence that G. trabeum uses a hydroquinone-driven Fenton reaction to cleave polyethylene glycol. We propose that similar reactions account for the ability of G. trabeum to attack lignocellulose.  相似文献   

15.
The oxidative degradation of syringic acid by the extracellular peroxidase ofPleurotus ostreatus was studied. Three products formed in the oxidation of syringic acid by the peroxidase in the presence of O2 and H2O2 were identified as 2,6-dimethoxyphenol, 2,6-dimethoxy-1,4-dihydroxybenzene, and 2,6-dimethoxy-1,4-benzoquinone. A free radical was detected as the reaction intermediate of the extracellular peroxidase-catalyzed oxidation of acetosyringone. These results can be explained by mechanisms involving the production of a phenoxy radical and subsequent decarboxylation. This is the first time that 2,6-dimethoxyphenol has been identified in extracellular peroxidase-catalyzed reactions.  相似文献   

16.
Both 3,4-dihydroxyphenylalanine and 2,4,5-trihydroxyphenylalanine were oxidized with periodate and mushroom tyrosinase to determine whether the latter compound is an intermediate in melanin biosynthesis. Matrix analysis of the spectra obtained with a rapid scan spectrophotometer and comparison of the spectra of quinone intermediates with model quinones disclosed that, although 2,4,5-trihydroxyphenylalanine can be oxidized to 2-carboxy-2,3-dihydroindole-5,6-quinone (dopachrome), this oxidation proceeds through a stable intermediate, 5-(2-carboxy-2-aminoethyl)-2-hydroxy-1,4-benzoquinone, which does not appear in the oxidation of 3,4-dihydroxyphenylalanine to dopachrome. Thus, these studies are in agreement with the original postulate, that 4-(2-carboxy-2-aminoethyl)-1,2-benzoquinone and leukodopachrome are the intermediates in the major pathway for dopachrome synthesis.  相似文献   

17.
Degradation of 1,4-naphthoquinones by Pseudomonas putida   总被引:1,自引:0,他引:1  
Pseudomonas putida J1 and J2, enriched from soil with juglone, are capable of a total degradation of 1,4-naphthoquinone, 2-hydroxy-1,4-naphthoquinone, and 2-chloro-1,4-naphthoquinone. Naphthazerin and plumbagin are only converted into the hydroxyderivatives 2-hydroxynaphthazerin and 3-hydroxyplumbagin, respectively, whereas 2-amino-1,4-naphthoquinone is not attacked at all. The degradation of 1,4-naphthoquinone begins with a hydroxylation of the quinoid ring, yielding 2-hydroxy-1,4-naphthoquinone (lawsone). Lawsone is reduced to 1,2,4-trihydroxynaphthalene with consumption of NADH. The fission product of the quinol could not be detected by direct means because of its instability. However, the presence of 2-chromonecarboxylic acid, a secondary product of lawsone degradation, leads to the conclusion, that the cleavage of the quinol takes place in the meta-position. The resulting ring fission product is converted into salicylic acid by removal of the side chain, presumably as pyruvate. Further degradation of salicyclic acid leads to the formation of catechol, which is then cleaved in the ortho-position and then metabolized via the 3-oxoadipate pathway. The initial steps in the degradation of 2-chloro-1,4-naphthoquinone, namely, the hydroxylation of the quinone to 2-chloro-3-hydroxy-1,4-naphthoquinone, followed by the elimination of the chlorine substituent lead to lawsone, which is further degraded through the pathway described. The degradation steps could be verified by the accumulation products of mutant strains blocked in different steps of lawsone metabolism. Generation of mutants was carried out by chemical and by transposon mutagenesis. The regulation of the first steps of the pathway catalysed by juglone hydroxylase and lawsone reductase, was investigated by induction experiments.  相似文献   

18.
The effects of various quinone herbicides and fungicides on the photosynthetic 14CO2 fixation and the incorporation of 14C among the products of photosynthesis in Chlorella pyrenoidosa was investigated. Addition of 30 μm 2,3-dichloro-1,4-naphthoquinone (dichlone), 2-amino-3-chloro-1,4-naphthoquinone (06K-quinone), or 2,3,5,6-tetrachloro-1,4-benzoquinone (chloranil) inhibited CO2 fixation, whereas 1,4-benzoquinone had no effect. Treatment with 3 μm or higher concentrations of dichlone, 06K-quinone or 1,4-benzoquinone also produced marked changes in the pattern of 14C distribution. A noticeable effect was an increase in the proportion of 14C in sucrose and glycine accompanied by a reduction in 14C lipids and glutamic acid. These changes appear to occur as a result of shifts in the flow of carbon along various biosynthetic pathways of photosynthetic CO2 fixation. It is suggested that inactivation of coenzyme A and shortage of reduced triphosphopyridine nucleotide in the quinone-treated cells inhibited the synthesis of lipids and glutamic acid, thereby diverting more carbon into sucrose and glycine.  相似文献   

19.
Naturally occurring terphenyls and related compounds such as terferol and its corresponding quinone and phlebiarubrone were synthesized from 2,5-diphenyl-1,4-benzoquinone. According to the proposed biosynthetic pathway, chemical conversion of phlebiarubrone to ustalic acid, a toxic compound isolated from the poisonous mushroom, Tricholoma ustale, was examined to find a low-yield conversion to the ustalic acid dimethyl ester.  相似文献   

20.
It is supposed that the main cytotoxicity mechanism of antitumour aziridinyl-substituted benzoquinones is their two-electron reduction to alkylating products by NAD(P)H:quinone oxidoreductase (NQO1, DT-diaphorase, EC 1.6.99.2). However, other possible cytotoxicity mechanisms, e.g., oxidative stress, are studied insufficiently. In the single-electron reduction of quinones including a novel compound RH1 (2,5-diaziridinyl- 3-(hydroxymethyl)-6-methyl-1,4-benzoquinone), by NADPH:cytochrome P-450 reductase (EC 1.6.2.4, P-450R), their reactivity increased with an increase in the redox potential of quinone/semiquinone couple (E(1)7), reaching a limiting value at E(1)7> or =-0.1V. The reactivity of quinones towards NQO1 did not depend on their E(1)7. The cytotoxicity of aziridinyl-unsubstituted quinones in bovine leukemia virus-transformed lamb kidney fibroblasts (line FLK) mimics their reactivity in P-450R-catalyzed reactions, exhibiting a parabolic dependence on their E(1)7. The toxicity of aziridinyl-benzoquinones, although being higher, also followed this trend and did not depend on their reactivity towards NQO1. The action of aziridinylbenzoquinones in FLK cells was accompanied by an increase in lipid peroxidation, their toxicity decreased by desferrioxamine and the antioxidant N,N'-diphenyl-p-phenylene diamine, and potentiated by 1,3-bis-(2-chloroethyl)-1-nitrosourea. The inhibitor of NQO1, dicumarol, protected against the toxicity of aziridinyl-benzoquinones except of 2,5-bis-(2'-hydroxyethylamino)-3,6-diaziridinyl-1,4-benzoquinone (BZQ), which was almost inactive as NQO1 substrate. The same events except the absence of pronounced effect of dicumarol were characteristic in the cytotoxicity of aziridinyl-unsubstituted quinones. These findings indicate that in addition to the activation by NQO1, the oxidative stress presumably initiated by single-electron transferring enzymes may be an important factor in the cytotoxicity of aziridinylbenzoquinones. The information obtained may contribute to the understanding of the molecular mechanisms of aziridinylquinone cytotoxicity and may be useful in the design of future bioreductive drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号