首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Beta-actinin is equivalent to Cap Z protein   总被引:2,自引:0,他引:2  
Chicken skeletal muscle beta-actinin, previously reported to bind the slow-exchanging (pointed) ends of actin filaments was purified to homogeneity. By two dimensional gel electrophoresis, it consists of two subunits, beta I (35 kDa) and beta II (32 kDa), and each subunit has two isoforms. The amino acid sequences of V8 protease-digested peptides of beta I were nearly identical with those of portions of the muscle barbed end-blocking protein Cap Z alpha, although several amino acids were different from those deduced from cDNA sequences (Casella, J.F., Casella, S.J., Hollands, J.A., Caldwell, J.E., and Cooper, J.A. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 5800-5804). The amino acid sequences of two peptides from beta II were completely identical with portions of Cap Z beta deduced from cDNA sequences (Caldwell, J.E., Waddle, J.A., Cooper, J.A., Hollands, J.A., Casella, S.J., and Casella, J.F. (1989) J. Biol. Chem. 264, 12648-12652). beta-Actinin capped the barbed end of an actin filament as evidenced by actin assembly of myosin S1-decorated filaments and specifically its impairment of growth in the "barbed" direction. Thus it is concluded that highly purified beta-actinin is identical with the more recently described Cap Z, an actin barbed-end capping protein of chicken skeletal muscle.  相似文献   

2.
We examined the function of beta-actinin as a pointed end capping protein of thin filaments in skeletal muscle. An improvement in preparing beta-actinin yielded purified beta-actinin which retained its activity for more than a week. Two-dimensional gel electrophoresis showed that the two subunits, beta I and beta II, of beta-actinin are, respectively, split into two to three components (isoforms) with different isoelectric points. Polyclonal antibody was raised by injecting such purified and undenatured chicken breast muscle beta-actinin composed of several components into a rabbit. Immuno-gold labeling examination with electron microscopy of an F-actin-beta-actinin complex decorated with HMM showed that 85% of bound gold particles was on the pointed end of actin filaments, while the remaining 15% was on the barbed end. This suggests that in beta-actinin preparation pointed end and barbed end capping proteins inevitably coexist. Immunofluorescence and immunoelectron microscopy directly showed that beta-actinin is located at the pointed end of thin filaments in myofibrils; it was also suggested that a capping protein having common antigenic determinants to beta-actinin is located at Z-line. Thus, the physiological function of beta-actinin as a pointed end capping protein was examined as follows: When beta-actinin was dissociated from the pointed end of thin filaments in an I-Z-I brush by using a high salt solution, thin filaments could be disassembled at the pointed ends at concentrations of exogenous actin lower than a critical value. At a physiological ionic strength, these salt-washed thin filaments gradually shortened at a constant rate of about 45 nm/h. Both the association and dissociation of monomeric actin at the pointed end were suppressed by the rebinding of exogenous beta-actinin. The main physiological role of beta-actinin is therefore to stabilize thin filaments in the sarcomere by preventing addition and removal of actin monomers at the pointed filament end.  相似文献   

3.
The desmin-specific calpain I from chicken gizzard smooth muscle is a dimer of 83 and 35 kDalton subunits. A monoclonal antibody to the large subunit did not cross-react with chicken gizzard and hamster skeletal muscle calpain II, but it did recognize hamster skeletal muscle desmin-specific calpain I and the denatured calpain II from chicken gizzard smooth muscle. These results indicate that different desmin-specific calpains have similar large subunits which differ significantly from the large subunit of calpain II in the same tissue.  相似文献   

4.
By using isolated actin bundles of brush border microvilli of chicken intestinal epithelial cells, it was clearly visualized that muscle beta-actinin caps the pointed end of an actin filament, whereas cytochalasin D masks the barbed end. The growth rate at the barbed end in the presence of beta-actinin was markedly slower than in its absence.  相似文献   

5.
beta-Actinin, a minor regulatory protein of muscle, was purified from skeletal muscles of rabbit and chicken by DEAE-Sephadex chromatography. beta-Actinin consisted of two subunits, beta I and betaII, with chain weights of 37,000 and 34,000 daltons, respectively. The amino acid compositions were similar, though not identical. It appears that each of the two subunits is associated in solution. beta-Actinin had the following effects on actin: (1) inhibition of reassociation of F-actin fragments; (2) inhibition of network formation of F-actin; (3) inhibition of growth of F-actin fragments; (4) retardation of depolymerization of F-actin and (5) acceleration of polymerization of G-actin. All these actions of beta-actinin can be explained in terms of action as an "ending factor". Experimental evidence favored the view that beta-actinin is bound to one end of the F-actin filament, namely to the end opposite to the direction of polymerization. Fluorescence-labeled anti-beta-actinin stained the middle portion of the A band of myofibrils. Based on the finding that the stain was unchanged on removal of myosin, it is suggested that beta-actinin is located at the free ends of the I filaments of myofibrils. Thus is seems likely that beta-actinin functions as an ending factor for actin filaments.  相似文献   

6.
Immunofluorescence microscopy showed that a monoclonal antibody, 2F3, specific to the beta I subunit (Cap Z alpha) of beta-actinin (Cap Z) bound to the Z lines of chicken breast muscle. When myofibrils were briefly extracted with 0.6 M KI, the reactivity of the Z lines with 2F3 was very weak, but on subsequent treatment with purified beta-actinin, the antibody binding recovered. beta-Actinin inhibited elongation of the actin filaments of isolated I-Z-I brushes, myosin-extracted sarcomeres, on the addition of G-actin. However, when an increased concentration of G-actin was added, the inhibitory action of beta-actinin became negligible, suggesting that beta-actinin did not cap the pointed end of an actin filament in a myofibril.  相似文献   

7.
Two types of calcium-dependent protease with distinct calcium requirements (termed muCANP and mCANP) are known in mammalian tissues. These two isozymes consist of different large (80-kDa) subunits (mu- or m-types) and identical small (30-kDa) subunits. By screening human and rat muscle cDNA libraries with a cDNA probe for the chicken CANP large subunit, which has a structure similar to both the mammalian mu- and m-types, a cDNA clone encoding a novel member of the CANP large subunit family was obtained. The encoded protein (designated "p94") consists of 821 amino acid residues (Mr 94,084) and shows significant sequence homology with both human mu-type (54%) and m-type (51%) large subunits. p94 can be divided into four domains (I-IV) as reported for the CANP large subunit family. Domains II and IV are potential cysteine protease and calcium-binding domains, respectively, and have sequences homologous to the corresponding domains of other CANP large subunits. However, domain I of p94 is significantly different from others. Moreover, p94 contains two unique sequences of 62 and 77 residues in domains II and III, respectively. In contrast to the ubiquitous expression of mu- and m-types, Northern blot analysis revealed that the mRNA for p94 exists only in skeletal muscle with none detected in other tissues including heart muscle and smooth muscles such as intestine.  相似文献   

8.
Chicken brain enolase was found to show multiple forms (I, II and III) separable by DEAE-cellulose column chromatography, whereas enolase from chicken skeletal muscle showed a single form. Brain enolase I, enolase III and muscle enolase were purified to electrophoretic homogeneity. These three isozymes were dimeric enzymes, each being composed of two identical subunits, alpha, gamma and beta, having molecular weight of 51,000 +/- 600, 52,000 +/- 550 and 51,500 +/- 650, respectively, as determined by SDS-polyacrylamide gel electrophoresis analysis. Brain enolases I, II and III and muscle enolase had similar catalytic parameters, including almost the same Km values and pH optima. Specific antibodies against brain enolase I, enolase III and muscle enolase, raised in rabbit, showed no cross-reactivity with each other. Antibodies for brain enolases I and III also reacted with brain enolase II, indicating that brain enolase II was the hybrid form (alpha gamma) of brain enolases I (alpha alpha) and III (gamma gamma). Enolases from chicken liver, kidney and heart reacted with the antisera for brain enolase I, but not with those for brain enolase III or muscle enolase. Developmental changes in enolase isozyme distribution were observed in chicken brain and skeletal muscle. In brain, the alpha gamma and gamma gamma forms were not detected in the early embryonic stage and increased gradually during the development of the brain, whereas the alpha alpha form existed at an almost constant level during development. In skeletal muscle, complete switching from alpha alpha enolase to beta beta was observed during the period around hatching.  相似文献   

9.
M-Protein (165 kDa) is a structural constituent of myofibrillar M-band in striated muscle. We generated a monoclonal antibody which recognized a 165-kDa protein from chicken pectoralis muscle in immunoblot analysis and stained the M-band under immunofluorescence microscopy. By screening a lambda gt11 cDNA library from chicken embryonic pectoralis muscle with this antibody, we isolated a cDNA clone encoding the M-protein. Northern blot analysis showed that M-protein mRNA is expressed in pectoralis and cardiac muscle but not in gizzard smooth muscle or non-muscle tissues. Moreover, the anterior latissimus dorsi muscle, which consists almost exclusively of slow fiber types, contains no detectable levels of the mRNA. The full-length cDNA sequence predicted a 1,450-amino acid polypeptide with a calculated molecular weight of 163 x 10(3). The encoded protein contains several copies of two different repetitive motifs: five copies of fibronectin type III repeats are in the middle part of the predicted molecule, and two and four copies of the immunoglobulin C2-type repeats are located toward the NH2-terminal and COOH-terminal regions, respectively. This indicates that M-protein, along with other thick filament-associated proteins such as C-protein, twichin, and titin, belongs to the superfamily of cytoskeletal proteins with immunoglobulin/fibronectin repeats.  相似文献   

10.
The maxi-K channel from bovine aortic smooth muscle consists of a pore-forming alpha subunit and a regulatory beta1 subunit that modifies the biophysical and pharmacological properties of the alpha subunit. In the present study, we examine ChTX-S10A blocking kinetics of single maxi-K channels in planar lipid bilayers from smooth muscle or from tsA-201 cells transiently transfected with either alpha or alpha+beta 1 subunits. Under low external ionic strength conditions, maxi-K channels from smooth muscle showed ChTX-S10A block times, 48 +/- 12 s, that were similar to those expressing alpha+beta 1 subunits, 51 +/- 16 s. In contrast, with the alpha subunit alone, ChTX-S10A block times were much shorter, 5 +/- 0.6 s, and were qualitatively similar to previously reported values for the skeletal muscle maxi-K channel. Increasing the external ionic strength caused a decrease in ChTX-S10A block times for maxi-K channel complexes of alpha+beta 1 subunits but not of alpha subunits alone. These findings indicate that it may be possible to predict the association of beta 1 subunits with native maxi-K channels by monitoring the kinetics of ChTX blockade of single channels, and they suggest that maxi-K channels in skeletal muscle do not contain a beta 1 subunit like the one present in smooth muscle. To further test this hypothesis, we examined the binding and cross-linking properties of [(125)I]-IbTX-D19Y/Y36F to both bovine smooth muscle and rabbit skeletal muscle membranes. [(125)I]-IbTX-D19Y/Y36F binds to rabbit skeletal muscle membranes with the same affinity as it does to smooth muscle membranes. However, specific cross-linking of [(125)I]-IbTX-D19Y/Y36F was observed into the beta 1 subunit of smooth muscle but not in skeletal muscle. Taken together, these data suggest that studies of ChTX block of single maxi-K channels provide an approach for characterizing structural and functional features of the alpha/beta 1 interaction.  相似文献   

11.
beta-Actinin is an actin-pointed end capping protein in skeletal muscle. Casella et al. have reported that a protein isolated from muscle acetone powder by procedures similar to those used for beta-actinin purification caps the barbed end of an actin filament (J. Biol. Chem. 261, 10915-10921 (1986)). We have confirmed the above results. However, it turned out that the two proteins were identical as to subunit sizes, peptide maps, and cross-reactivities with anti-beta-actinin IgG. The binding of the two proteins to opposite ends of an actin filament remains unexplained.  相似文献   

12.
We have selected tropomyosin subunits and myosin light chains as representative markers of the myofibrillar proteins of the thin and thick filaments and have studied changes in the type of proteins present during development in chicken and rabbit striated muscles. The β subunit of tropomyosin is the major species found in all embryonic skeletal muscles studied. During development the proportion of the α subunit of tropomyosin gradually increases so that in adult skeletal muscles the α subunit is either the only or the major species present. In contrast, cardiac muscles of both chicken and rabbit contain only the α subunit which remains invariant with development. Two subspecies of the α subunit of tropomyosin which differ in charge only were found in adult and embryonic chicken skeletal muscles. Only one of these subspecies seems to be common to chicken cardiac tropomyosin. With respect to myosin light chains, embryonic skeletal fast muscle myosin of both species resembles the adult fast muscle myosin except that the LC3 light chain characteristic of the adult skeletal fast muscle is present in smaller amounts. The significance of these isozymic changes in the two myofibrillar proteins is discussed in terms of a model of differential gene expression during development of chicken and rabbit skeletal muscles.  相似文献   

13.
Summary Three different isoenzymes of human carbonic anhydrase are now well characterized. Carbonic anhydrase I and II have been known for several years and are located in high amounts in red blood cells as well as in many other tissues.Carbonic anhydrase III, a protein showing CO2 hydratase and p-nitrophenylphosphatase activity was isolated from skeletal muscle some years ago. Earlier observations based on enzyme activity and radioimmunoassay studies have suggested that this protein is present in greater quantities in red skeletal muscles than in white ones. We have purified CA III from human soleus muscle and using obtained monospecific polyclonal antibody localized this protein in the same muscle fibers which show acid resistant ATPase activity. Using this protein as a marker for type I muscle fibers, fiber classification into type I and II could now be done also from paraffin embedded sections.This study is supported by the Research Council of Physical Education and Sport, Ministry of Education, Finland  相似文献   

14.
It has been demonstrated that embryonic chicken gizzard smooth muscle contains a unique embryonic myosin light chain of 23,000 mol wt, called L23 (Katoh, N., and S. Kubo, 1978, Biochem. Biophys. Acta, 535:401-411; Takano-Ohmuro, H., T. Obinata, T. Mikawa, and T. Masaki, 1983, J. Biochem. (Tokyo), 93:903-908). When we examined myosins in developing chicken ventricular and pectoralis muscles by two-dimensional gel electrophoresis, the myosin light chain (Le) that completely comigrates with L23 was detected in both striated muscles at early developmental stages. Two monoclonal antibodies, MT-53f and MT-185d, were applied to characterize the embryonic light chain Le of striated muscles. Both monoclonal antibodies were raised to fast skeletal muscle myosin light chains; the former antibody is specific to fast muscle myosin light chains 1 and 3, whereas the latter recognizes not only fast muscle myosin light chains but also the embryonic smooth muscle light chain L23. The immunoblots combined with both one- and two-dimensional gel electrophoresis showed that Le reacts with MT-185d but not with MT-53f. These results strongly indicate that Le is identical to L23 and that embryonic chicken skeletal, cardiac, and smooth muscles express a common embryo-specific myosin light chain.  相似文献   

15.
In this study, we have examined the spatiotemporal distribution of the alpha 1 integrin subunit, a putative laminin and collagen receptor, in avian embryos, using immunofluorescence microscopy and immunoblotting techniques. We used an antibody raised against a gizzard 175 x 10(3) M(r) membrane protein which was described previously and which we found to be immunologically identical to the chicken alpha 1 integrin subunit. In adult avian tissues, alpha 1 integrin exhibited a very restricted pattern of expression; it was detected only in smooth muscle and in capillary endothelial cells. In the developing embryo, alpha 1 integrin subunit expression was discovered in addition to smooth muscle and capillary endothelial cells, transiently, in both central and peripheral nervous systems and in striated muscles, in association with laminin and collagen IV. alpha 1 integrin was practically absent from most epithelial tissues, including the liver, pancreas and kidney tubules, and was weakly expressed by tissues that were not associated with laminin and collagen IV. In the nervous system, alpha 1 integrin subunit expression occurred predominantly at the time of early neuronal differentiation. During skeletal muscle development, alpha 1 integrin was expressed on myogenic precursors, during myoblast migration, and in differentiating myotubes. alpha 1 integrin disappeared from skeletal muscle cells as they became contractile. In visceral and vascular smooth muscles, alpha 1 integrin appeared specifically during early smooth muscle cell differentiation and, later, was permanently expressed after cell maturation. These results indicate that (i) the expression pattern of alpha 1 integrin is consistent with a function as a laminin/collagen IV receptor; (ii) during avian development, expression of the alpha 1 integrin subunit is spatially and temporally regulated; (iii) during myogenesis and neurogenesis, expression of alpha 1 integrin is transient and correlates with cell migration and differentiation.  相似文献   

16.
《The Journal of cell biology》1990,111(5):2159-2170
A membrane glycoprotein complex was isolated and purified from human smooth muscle by detergent solubilization and affinity chromatography on collagen-Sepharose. The complex was identified as VLA-1 integrin and consisted of two subunits of 195 and 130 kD in SDS-PAGE. Liposomes containing the VLA-1 integrin adhered to surfaces coated with type I, II, III, and IV collagens, Clq subcomponent of the first component of the complement, and laminin. The liposomes specifically adhered to these proteins in a Ca2+, Mg2(+)-dependent manner, but did not bind to gelatin, fibronectin, and thrombospondin substrates. The expression of VLA-1 integrin in different human tissues and cell types, and during aorta smooth muscle development was studied by SDS-PAGE, and subsequent quantitative immunoblotting was performed with antibodies recognizing alpha 1 and beta 1 subunits of the VLA-1 integrin. A high level of VLA- 1 integrin expression was an exceptional feature of smooth muscles. Fibroblasts, endothelial cells, keratinocytes, striated muscles, and platelets contained trace amounts of VLA-1 integrin. In the 10-wk-old human fetal aorta, VLA-1 integrin was found only in smooth muscle cells whereas mesenchymal cells, surrounding aortic smooth muscle cells, were VLA-1 integrin negative. By the 24th wk of gestation, the amount of VLA- 1 integrin was significantly reduced in the aortic media (4.3-fold for alpha 1 subunit and 2.5-fold for beta 1 subunit) compared with that in the 10-wk-old aortic smooth muscle cells. After birth, the expression of VLA-1 integrin increased and in the 1.5-yr-old child aorta the VLA-1 integrin level was almost the same as in adult aortic media. Smooth muscle cells from intimal thickening of adult aorta express five times less alpha 1 subunit of VLA integrin that smooth muscle cells from adult aortic media. In primary culture of aortic smooth muscle cells, the content of the VLA-1 integrin was dramatically reduced and subcultured cells did not contain VLA-1 integrin at all.  相似文献   

17.
We examined whether the gizzard MHC gene is expressed in other smooth muscle tissues and, if so, whether there exist any smooth muscle MHC isoforms at the mRNA level. Northern blot analysis showed that the gizzard MHC gene was also expressed in the aorta and jejunum, but not in the pectoralis muscle or in fibroblasts. This indicates that striated muscle and non-muscle MHC isoforms are encoded in genes distinct from the smooth muscle MHC gene. Further, nuclease S1 mapping showed that the aortic smooth muscle MHC mRNA was distinct from the gizzard mRNA in the 5'-terminal coding region. Both of these mRNA species are expressed in the jejunum. These observations suggest that there exist at least two chicken smooth muscle MHC isoforms, vascular-type and intestinal-type, and that these isoforms are generated from a single-copy gene, probably by an alternative mRNA processing mechanism.  相似文献   

18.
19.
Contents of myofibrillar proteins in cardiac, skeletal, and smooth muscles   总被引:1,自引:0,他引:1  
The in situ contents of myosin, actin, alpha-actinin, tropomyosin, troponin, desmin were estimated in dog cardiac, rabbit skeletal, and chicken smooth muscles. Whole muscle tissues were dissolved with 8 M guanidine hydrochloride and subjected to two-dimensional gel electrophoresis, which is a nonequilibrium pH gradient electrophoresis (Murakami, U. & Uchida, K. (1984) J. Biochem. 95, 1577-1584) with some modification. The amount of protein in a spot on a slab gel was determined by quantification of the extracted dye. Dye binding capacity of individual myofibrillar proteins was determined by using the purified protein. Myosin contents were 82 +/- 7 pmol/mg wet weight in cardiac muscle, 105 +/- 10 pmol/mg wet weight in skeletal muscle, and 45 +/- 4 pmol/mg wet weight in smooth muscle. Actin contents were 339 +/- 15 pmol/mg wet weight in cardiac muscle, 625 +/- 27 pmol/mg wet weight in skeletal muscle, and 742 +/- 13 pmol/mg wet weight in smooth muscle. The subunit stoichiometry of myosin in the three types of muscles was two heavy chains and four light chains, and there was one light chain 2 for every heavy chain. The molar ratio of actin to tropomyosin was 7/1 in the three types of muscles. Striking differences were seen in the molar ratio of myosin to actin: 1.0/4.1 in cardiac muscle, 1.0/6.0 in skeletal muscle, and 1.0/16.5 in smooth muscle.  相似文献   

20.
Fiber type-specific distribution of M-band proteins in chicken muscle   总被引:1,自引:0,他引:1  
The functions of two myofibrillar proteins, myomesin (Mr 185,000) and M-protein (Mr 165,000), associated with the M-band are as yet unknown. To extend our knowledge of these proteins, we have examined chicken striated muscles with fast and slow contractile properties, e.g., pectoralis major, PLD, ALD, medial adductor, and lateral adductor, to determine the expression and isoform composition of myomesin and M-protein in various muscles and fiber types. The high molecular weight M-band proteins were characterized and quantitated using monoclonal antibodies in immunoblotting and double-antibody sandwich ELISA. Fiber specificity was determined by immuno- and enzyme histochemistry. In addition to the previously reported Mr 195,000 and 190,000 isoforms of myomesin in heart [Grove et al. (1985): J Cell Biol 101:1431], the Mr 185,000 myomesin in skeletal muscles may represent different isoforms in fast and slow muscles on the basis of distinctive degradation patterns. M-protein has the same molecular weight in striated chicken muscles and degradation patterns indicate only one isoform. The low quantities of M-protein in slow muscles were shown to be due to the absence of M-protein in two of the generally recognized slow fiber types, types I and III. Thus, M-protein was present only in fast type II fibers, whereas myomesin was ubiquitous in all fiber types. Whatever the causal relationship, M-protein appears to function in fast motor units composed of type II fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号