首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Miniature end-plate currents and potentials (MEPPs and MEPCs, respectively) were recorded in fast and slow rat muscle fibers by extracellular focal recording and voltage clamp techniques. The rise time and the half-decay time of these potentials and currents were 1.3–1.4 times greater in slow fibers than in fast. A similar difference, but lesser in degree, also was observed after inhibition of acetylcholinesterase. Decline of the end-plate currents remained, generally speaking, exponential and its rate depended on the clamped voltage. The percentage distribution of fibers of different types by duration of MEPP and MEPC in fast and slow muscles correlated with the percentage distribution of fibers identified in these muscles on the basis of other parameters. Factors determining the time course of the responses (acetylcholinesterase activity, length of diffusion pathways, differences in passive electrical properties of the membrane), and their importance for synapses of different types, are discussed.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 12, No. 6, pp. 627–636, November–December, 1980.  相似文献   

2.
Parameters of single acetylcholine-activated ionic channels and the time course of miniature end-plate currents (MEPC) were compared in experiments on fast and slow lamprey, frog, chicken, and rat muscle fibers. The mean open time of the channels was shown to be the principal, but not the only factor determining the duration of MEPC. The role of the remaining factors and, in particular, of insufficiency of acetylcholinesterase activity, in slow muscle fibers and also in "giant" MEPC generation, is much greater than in fast fibers or during ordinary MEPC generation. Relatively low acetylcholinesterase activity favors asynchronous interaction between acetylcholine molecules and receptors, which delays the time course of synaptic responses. Mechanisms of acceleration of MEPC decay under the influence of -bungarotoxin and D-tubocurarine, and also the conditions for MEPC generation in different regions of the neuromuscular junction are discussed.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 16, No. 5, pp. 590–602, September–October, 1984.  相似文献   

3.
The distribution of different types of ionic channels carrying inward currents was investigated in the somatic membranes of spinal ganglion neurons in rats belonging to three different age groups: at 5–9 days, 45 days, and 3 months. A decrease was found in the number of neuronal membranes operating all four types of inward current channels simultaneously: "fast" (tetrodotoxin-sensitive), "slow" (tetrodotoxin-resistant) sodium currents and low- and high-threshold calcium currents. There were 14.5% of such neurons in the first age group, 5% in the second, and 1% on the third. It was found that this change was related to the disappearance of "slow" (tetrodotoxin-resistant) sodium and high-threshold calcium channels from the membrane. The number of neuronal somatic membranes with only two types of inward current channels ("fast" sodium and high-threshold calcium channels) increased proportionately.A. A. Bogomolets Institute of Technology, Academy of Sciences of the Ukrainian SSR, Kiev Translated from Neirofiziologiya, Vol. 18, No. 6, pp. 813–820, November–December, 1986.  相似文献   

4.
Correlations between densities of various types of inward currents in the somatic membrane of dorsal root ganglion neurons were studied in three different rat age groups: 5–9 days, 45 days, and 90 days. A linear relationship was found in neurons with "slow" tetrodotoxin-sensitive sodium current between the densities of high-threshold calcium current and "slow" sodium current (Bravias-Pearson's correlation coefficient: r=0.84 and 0.70 for n1=16 and n2=28, respectively). No such correlation was observed in neurons with low-threshold calcium inward current. Cells with only two types of channel — "fast" sodium and high-threshold calcium — present in their somatic membrane manifested an inverse correlation (r=–0.48, where n4=95) between the densities of transmembrane currents passing through these channels. No inverse relationship was observed in the density of "fast" sodium and high-threshold calcium currents in neurons with tetradotoxinresistant "slow" sodium and/or low threshold calcium channels.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 6, pp. 820–827, November–December, 1986.  相似文献   

5.
The ultrastructure of the muscle fibers and the electrical constants and responses of the membrane to microapplication of L-glutamate and acetylcholine were investigated in the longitudinal flight muscle and the flexor tibiae ofLocusta migratoria migratorioides. The twitch flight muscle differs from the slower leg muscle in the smaller size of its sarcomeres and the lower values of the space attenuation factor of the electrotonic potential, time constant, and resistance of the membrane. Microapplication of sodium L-glutamate at strictly definite points of the fibers of both muscles evoked depolarization responses of the membrane. In experiments on normal and denervated muscle, during microapplication of acetylcholine, changes in the level of the membrane potential were never observed. It is concluded that L-glutamic acid is the excitatory mediator of the twitch and slow muscle systems of insects.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 9, No. 5, pp. 532–538, September–October, 1977.  相似文献   

6.
Focal extracellular recordings were made of postjunctional currents produced at synapses of the inferior rectus eye muscle fibers by the spontaneous release of quanta of transmitter. These consisted of miniature endplate currents, or MEPC, in phasic fibers and miniature postjunctional currents, or MPJC, in tonic fibers. Open time of ionic channels (chan) was also registered. In tonic fibers, MPJC lasted considerably longer than MEPC did in phasic fibers: rising time, decay time, and chan in the former measured respectively 2.5, 4–5, and 2.2 times higher than in the latter. Acetylcholinesterace (AChE) inhibition produced a much greater (4.4-fold extension of current decay in phasic than in tonic fibers, where a 1.8-fold increase was seen, thereby reducing the gap between the decay time of currents in these fibers to a difference of 1.6 times. The more protracted decay of MPJC in tonic fibers compared with MEPC in phasic fibers is determined by the lower functional activity of AChE as well as the higher value of chan. Duration of MEPC and magnitude of chan in the "slow" phasic fibers of rat skeletal muscles fell well below the same parameters measured in the tonic fibers of the ocular muscle.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 19, No. 1, pp. 120–129, January–February, 1987.  相似文献   

7.
Excitatory miniature postsynaptic potentials were studied by an intracellular recording method in fast and slow muscle fibers ofLocusta migratorioides. Statistical analysis showed that liberation of mediator in both types of fibers can be predicted by the formula for a negative binomial distribution with a probability of 85%. This correlation is evidence of some degree of interaction between consecutive liberations of quanta of mediator by nerve endings. It is shown that the fraction of miniature potentials depending on the external calcium concentration is greater in fast muscle fibers. An increase in the magnesium ion concentration from 2 to 40 mM led to a decrease in the frequency of miniature potentials, and this decrease was greater in fast fibers; an increase in the magnesium ion concentration from 1 to 10 mM in calcium-free solutions, on the other hand, led to some increase in frequency, and this also was greater in fast muscle fibers. It is concluded that nerve endings in fast and slow muscle fibers differ in their sensitivity to changes in the ionic composition of the medium.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 13, No. 2, pp. 210–217, March–April, 1981.  相似文献   

8.
Summary 1. Two types of muscle fibers, red (-slow) and white (-twitch), have been described in the extraocular muscles of Carassius and Rana, respectively. 2. Red and white muscle fibers occupy a definite position in particular eye muscles and occur in almost constant numerical relation. 3. The red fibers in the fish extraocular muscles are supposedly slow. The position of the triads is at the level of the A/I junction, whereas that of the white muscle fibers is at the Z line level. 4. In the frog the extraocular muscles consist of two types of muscle fibers, which have morphological features of slow and fast fibers, respectively, the triads being localized at the Z line level.This work has been supported by the Polish Academy of Sciences.Authors express their thanks to Doc. Dr. J. Kawiak for help in densitometrography.  相似文献   

9.
Excitation-contraction in muscle fibers are coupled through a complex mechanism involving multiproteic components located at a specialized cellular site, the triadic junction. Triads in normal muscle fiber result from the apposition of sarcoplasmic reticulum citernae and T-tubule and possess strikingly organized ultrastructural elements, bridging both types of membranes, the "junctional feet". Muscular dysgenesis in the mouse is characterized by total muscle inactivity in the developing skeletal muscles due to excitation-contraction uncoupling. Triads have been found to be disorganized with no "junctional feet" and dihydropyridine (DHP) binding sites are decreased with no slow Ca2+ currents, suggesting a basic defect in the excitation-contraction coupling machinery itself. We may hypothesize that muscular dysgenesis results in a marked defect in a functional protein involved in the morphogenesis of the triad and/or directly involved in Ca2+ release for contraction.  相似文献   

10.
Summary The fine structure of single identified muscle fibers and their nerve terminals in the limb closer muscle of the shore crab Eriphia spinifrons was examined, using a previous classification based on histochemical evidence which recognizes a slow (Type-I) fiber and three fast (Type-II, Type-III, Type-IV) fibers. All four fiber types have a fine structure characteristic of crustacean slow muscle, with 10–12 thin filaments surrounding each thick filament and sarcomere lengths of 6–13 m. Type-IV fibers have sarcomere lengths of 6 m while the other three types have substantially longer sarcomeres (10–13 m). Structural features of nerve terminals revealed excitatory innervation in all four fiber types but inhibitory innervation in Type-I, Type-II, and Type-III fibers only. Thus fibers with longer sarcomeres receive the inhibitor axon but those with shorter sarcomeres do not. Amongst the former, synaptic contact from an inhibitory nerve terminal onto an excitatory one, denoting presynaptic inhibition, was seen in Type-I and Type-II fibers but not in Type-III and Type-IV fibers. Inhibitory innervation of the walking leg closer muscle is therefore highly differentiated: some fibers lack inhibitory nerve terminals, some possess postsynaptic inhibition, and some possess both postsynaptic and presynaptic inhibition.  相似文献   

11.
Membrane ionic currents in striated muscle bundles of lamprey suction apparatus were recorded using a double sucrose gap technique. Transmembrane currents in a single muscle fiber and a fiber bundle in the frog were compared so as to check the validity of current measurement in multicell preparations. It was found that fast inward sodium currents arise in the lamprey muscle membrane in response to depolarization together with a delayed outward potassium current, with steady-state characteristics resembling those of membrane currents in frog muscle. The only difference consisted of a flatter curve for steady-state inactivation of potassium current, probably indicative of greater density of potassium channels. Both the changes in reversal potential and the speed of potassium current deactivation occurring during protracted stimuli point to the presence of two fractions in this current. No functioning voltage-dependent calcium channels are found in the lamprey muscle membrane.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 18, No. 5, pp. 629–636, September–October, 1986.  相似文献   

12.
Bilateral asymmetry of the paired snapper/pincer claws may be reversed in adult snapping shrimps (Alpheus heterochelis). Removal of the snapper claw triggers transformation of the contralateral pincer claw into a snapper and the regeneration of a new pincer claw at the old snapper site. During this process the pincer closer muscle is remodeled to a snapper-type, and these alterations have been examined with the electron microscope. There is selective death of the central band of fast fibers, accompanied by an accumulation of electron-dense crysttaline bodies in the degenerating fibers. Two principal types of hemocytes (amebocytes and coagulocytes) invade the area and the degenerating muscle fibers. New myotubes also appear in this central site. The myotubes are characterized by a prolific network of presumptive sarcoplasmic reticulum and transverse tubules, nascent myofibrils, and crystalline bodies. The myotubes are innervated by many motor nerve terminals, and they subsequently differentiate into long-sarcomere (8–12 m), slow muscle fibers. Remodeling of the central band, therefore, occurs by degeneration of the fast fibers and their replacement by new slow fibers. Remnants of the degenerating fast fibers act as scaffolding for the myotubes which originate from adjacent satellite cells. The crystalline bodies may represent protein stores from the degeneration of the fast fibers, recycled for use in the genesis of new fibers. The invading hemocytes appear to play several roles, initially phagocytosing the fast muscle fibers, transporting the crystalline bodies into the new myotubes, and acting as stem cells for the new muscle fibers. Apart from the central band of fibers, the remaining pincer-type slow fibers with sarcomere lengths of 5–7 m are transformed via sarcomere lengthening into snapper-type slow fibers with sarcomere lengths of 7–12 m. Thus, during claw transformation in adult snapping shrimps, the pincer closer muscle is remodeled into a snapper closer muscle by selective death of the fast-fiber band, replacement of the fast-fiber band by new slow fibers, and transformation of the existing slow fibers to an even-slower variety. Note. This paper is dedicated to the fond memory of Professor M.S. Laverack whose enjoyment of biological research and gentle encouragement of such endeavours touched all those who knew him.  相似文献   

13.
Miniature end-plate potentials (MEPPs) were recorded in fast and slow chick muscle fibers extracellularly (focally) and under voltage clamp conditions. The duration of the MEPPs in synapses of slow fibers was on average 2.5 times longer than their duration in synapses of fast fibers. Inhibition of acetylcholinesterase (AChE) lengthened MEPPs by a varied degree: by 1.5 times in synapses of slow fibers and by 3.5 times in those of fast fibers. As a result the difference in the decay time of MEPPs in synapses of these types disappeared almost completely, and only a small difference remained in the rise time of the MEPPs. The MEPP decay time during hyperpolarization in the slow fiber synapse was rather less dependent on potential than in synapses of fast fibers; after inhibition of AChE it became even less dependent. Similar changes in potential dependence were found after lengthening of the MEPP by the action of ethanol. The functional significance of differences in AChE activity and in the activating effect of the mediator for the kinetics of MEPPs in synapses of fast and slow fibers is discussed.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 13, No. 4, pp. 390–397, July–August, 1981.  相似文献   

14.
The role of the tube feet in locomotion of the ophiuranAmphipholis kochii Lütken is examined. During stepping movements the anterior tube feet attach themselves to the supporting surface and at the end of the step they detach themselves from it. The signal for detachment is deviation of the foot into the posterior (relative to the direction of motion) position. Because of this arrangement of the "stepping" mechanism of the tube feet the task of coordinating their activity with arm movements is greatly simplified. The feet "automatically" attach themselves to the support when the arm which carries them plays the role of motor; conversely, they detach themselves from the support when this arm moves forward. The CNS thus evidently does not participate in foot and arm movement coordination. It simply assigns the general direction of motion to all the feet and coordination takes place "automatically" as a result of the special properties of the "stepping" mechanism of individual feet.Institute of Oceanology, Academy of Sciences of the USSR, Moscow. Institute of Problems of Information Transmission, Academy of Sciences of the USSR, Moscow. Moscow State University. Translated from Neirofiziologiya, Vol. 8, No. 6, pp. 633–639, November–December, 1976.  相似文献   

15.
Summary Comparisons were made of the passive electrical properties of closer muscle fibers in the dimorphic claws of snapping shrimp,Alpheus armillatus. During claw transformation the small fibers of pincer claws grow to become much larger snapper claw fibers. As muscle fibers grow, the relationship of fiber input resistance (R 0) to fiber diameter (d) is predicted by the proportionality,R 0d –3/2. Muscle fiber membrane resistance,R m, is independent of fiber diameter, but membrane capacitance,C m, grows with diameter. This results in a 40 to 50 fold reduction in fiber input impedance as fiber diameter enlarges during transformation. Reductions of muscle fiber impedance are partially compensated by 2–5 fold increases in quantal content at excitatory synapses on snapper muscle fibers. However, changes in quantal content during transformation apparently are independent of fiber diameter per se. Excitatory junction potentials in both pincer and snapper muscle fibers have equal amplitude. Because fiber input impedance decreases precipitously during transformation, and in view of the relatively small compensatory changes in quantal content at excitatory synapses, additional pre- or post-synaptic modifications must supplement increased quantal content to maintain synaptic efficacy in transformed muscle fibers.Abbreviations ejp excitatory junctional potential - epp endplate potential - mepp miniature endplate potential  相似文献   

16.
Membrane potentials and action potentials evoked by antidromic and direct stimulation were investigated in motoneurons of the trigeminal nucleus in rats innervating the masseter muscle. This motor nucleus was shown to contain cell populations with high and low membrane potentials. The responses of cells of the first group had shorter latent periods of their antidromic action potentials, a longer spike duration, and a lower amplitude and shorter duration of after-hyperpolarization than responses of cells of the second group, and the input resistance of their membrane also is lower. The bimodal character of distribution of electrophysiological parameters of motoneurons in the trigeminal nucleus indicates that "fast" and "slow" fibers of the masseter muscles may be innervated by different types of nerve cells.N. A. Semashko Moscow Medical Stomatological Institute. Translated from Neirofiziologiya, Vol. 13, No. 3, pp. 270–274, May–June, 1981.  相似文献   

17.
It was shown by intracellular recording that stimulation of the motor cortex evokes E PS Ps and I PS Ps in reticulospinal neurons of the gigantocellular nucleus of the cat medulla. The E PS Ps appeared in 94.3% and the I PS Ps in 5.7% of neurons tested. Analysis of the presynaptic pathway showed that 77.4% of E PS Ps studied arose through monosynaptic, and 22.6% through polysynaptic corticoreticular connections. By their latent period, duration, and rise time up to a maximum the monosynaptic E PS Ps were divided into two groups: "fast" and "slow." It is postulated that "fast" E PS Ps are generated in reticulospinal neurons which are activated by fast-conducting fibers and "slow" E PS Ps by slowly conducting corticobulbar fibers. I PS Ps were recorded from reticulospinal neurons that also were inhibited by stimulation of the ventral columns of the spinal cord. The hypothesis is put forward that cortical motor signals in cats can be transmitted to the spinal cord via monosynaptic and polysynaptic connections of "fast" and "slow" pyramidal neurons with reticulospinal neurons.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 8, No. 3, pp. 250–257, May–June, 1976.  相似文献   

18.
L P Henderson  P Brehm 《Neuron》1989,2(4):1399-1405
The time course of synaptic currents is significantly longer in slow than in fast twitch muscle fibers. To examine the underlying basis for these slow synaptic currents, single-channel recordings were made from the synapses of slow muscle fibers. Our analysis indicates that low conductance acetylcholine receptor (AChR) channels predominate in innervated slow fibers. The high level of expression of low conductance channels is in contrast to fast twitch fibers, in which these channels are expressed in significant numbers only in embryonic or denervated muscle. Analysis of the distribution of open durations for the low conductance channel class suggests that the open time of this AChR class is the major determinant in shaping the slow time course of synaptic current decay. The predominant contribution of low conductance channel openings to synaptic currents of slow muscle fibers indicates a well-defined physiological role for this class of AChRs.  相似文献   

19.
We have studied the structure of developing normal and dysgenic (mdg/mdg) mouse muscle fibers in vivo, with special attention to the components of the junctions between the sarcoplasmic reticulum and either the surface membrane or the transverse tubules. Triads and dyads are rare in dysgenic muscle fibers, but have apparently normal disposition of feet and calsequestrin. Peripheral couplings in normal developing muscle fibers have junctional tetrads in their surface membrane in association with the junctional feet. Muscle fibers in dysgenic mice lack junctional tetrads. This provides indirect evidence for the identification of the components of junctional tetrads with dihydropyridine receptors, which are known to be absent in dysgenic muscle fibers.  相似文献   

20.
Ionic currents responsible for the action potential in scorpion muscle fibers were characterized using a three-intracellular microelectrode voltage clamp applied at the fiber ends (8–12°C). Large calcium currents (I Ca) trigger contractile activation in physiological saline (5 mm Ca) but can be studied in the absence of contractile activation in a low Ca saline (2.5 mm). Barium (Ba) ions (1.5–3 mm) support inward current but not contractile activation.Ca conductance kinetics are fast (time constant of 3 msec at 0 mV) and very voltage dependent, with steady-state conductance increasing e-fold in approximately 4 mV. Half-activation occurs at –25 mV. Neither I Ca nor I Ba show rapid inactivation, but a slow, voltage-dependent inactivation eliminates I Ca at voltages positive to –40 mV. Kinetically, scorpion channels are more similar to L-type Ca channels in vertebrate cardiac muscle than to those in skeletal muscle.Outward K currents turn on more slowly and with a longer delay than do Ca currents, and K conductance rises less steeply with voltage (e-fold change in 10 mV; half-maximal level at 0 mV). K channels are blocked by externally applied tetraethylammonium and 3,4 diaminopyridine.This work was supported by a grant from the NIH (NS-17510) to W.F.G. and a NRSA award to T.S. (GM-09921).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号