首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An immunoprecipitation assay was established for simian virus 40 T-antigen-bound nucleoprotein complexes by means of precipitation with sera from hamsters bearing simian virus 40-induced tumors. About 80% of simian virus 40 replicating nucleoprotein complexes in various stages of replication were immunoprecipitated. In contrast, less than 21% of mature nucleoprotein complexes were immunoprecipitated. Pulse-chase experiments showed that T antigen was lost from most of the nucleoprotein complexes concurrently with completion of DNA replication. T antigen induced by dl-940, a mutant with a deletion in the region coding for small T antigen, was also associated with most of the replicating nucleoprotein complexes. Once bound with replicating nucleoprotein complexes at the permissive temperature, thermolabile T antigen induced by tsA900 remained associated with the complexes during elongation of the replicating DNA chain at the restrictive temperature. These results suggest that simian virus 40 T antigen (probably large T antigen) associates with nucleoprotein complexes at or before initiation of DNA replication and that the majority of the T antigen dissociates from the nucleoprotein complexes simultaneously with completion of DNA replication.  相似文献   

2.
The location of phosphorylation sites in the large T antigen of simian virus 40 has been studied both by partial chemical cleavage and by partial proteolysis of various forms of large T. These included the full-size wild-type molecule with an apparent molecular weight of 88,000, deleted molecules coded for by the mutants dl1265 and dl1263, and several shortened derivatives generated by the action of a cellular protease. These molecules differed from each other by variations in the carboxy-terminal end. In contrast, a ubiquitous but minor large T form with a molecular weight of 91,000 was found to be modified in the amino-terminal half of the molecule. In addition to the phosphorylation of threonine at position 701 (K.-H. Scheidtmann et al., J. Virol. 38:59-69, 1981), two other discrete domains of phosphorylation were recognized, one at either side of the molecule. The amino-terminal region was located between positions 81 and 124 and contained both phosphothreonine and phosphoserine residues. The carboxy-terminal region was located between approximate positions 500 and 640 and contained at least one phosphoserine residue but no phosphothreonine. The presence in the phosphorylated domains of large T of known recognition sequences for different types of protein kinases is discussed, together with possible functions of large T associated with these domains.  相似文献   

3.
Treatment of nucleoprotein complexes (NPCs) from simian virus 40 (SV40)-infected TC7 cells with NaCl (1 or 2 M) or guanidine-hydrochloride (1 or 2 M) resulted in a significant fraction of T antigen still associated with SV40 (I) DNA. Immunoprecipitation of the salt-treated NPCs with SV40 anti-T serum indicated that T antigen is preferentially associated with SV40 (I) DNA rather than with SV40 (II) DNA. Treatment of the NPCs with 4 M guanidine-hydrochloride, however, resulted in a substantial decrease in the amount of SV40 (I) and (II) DNA associated with T antigen. As the temperature was increased to 37 degrees C during incubation of NPCs with NaCl or guanidine-hydrochloride, there was a decrease in the amount of SV40 (I) and (II) DNA immunoprecipitated with SV40 anti-T serum. In the absence of salt, temperature had no effect on the association of T antigen with the SV40 DNA in the NPCs. Treatment of NPCs from SV40 wildtype or tsA58-infected cells grown at the permissive temperature with 1 or 2 M NaCl indicated that tsA T antigen has the same sensitivities as wild-type T antigen to high salt treatment when bound to DNA in NPCs. Characterization of the proteins associated with SV40 (I) DNA after high salt treatment revealed that, in addition to T antigen, a certain amount of viral capsid proteins VP1 and VP3 remained associated with the DNA. Complexes containing SV40 (I) DNA had a sedimentation value of 53S after 1 M NaCl treatment and 43S after 2 M NaCl treatment.  相似文献   

4.
trans-dominant defective mutants of simian virus 40 T antigen.   总被引:10,自引:7,他引:3       下载免费PDF全文
We constructed a collection of linker insertion mutants in the simian virus 40 (SV40) genome and studied several of these with changes limited to a part of the large T antigen gene corresponding to an amino acid sequence shared with other ATPases. Two of these mutants were found to have a novel phenotype in that they could not be complemented for plaque formation by a late-region deletion mutant. These two mutants, in contrast to other mutants in this region, were able to transform rat cells in culture at a frequency close to that of the wild-type gene. The noncomplementing mutants were found to be potent inhibitors of SV40 DNA replication despite the presence of wild-type T antigen in the transfected cells. This inhibition was shown to be the result of the introduced mutations in the large T antigen gene. We conclude that the large T antigens of the noncomplementing mutants can act as inhibitors of SV40 DNA replication.  相似文献   

5.
Simian virus 40 tumor antigen (SV40 T antigen) was bound to both replicating and fully replicated SV40 chromatin extracted with a low-salt buffer from the nuclei of infected cells, and at least a part of the association was tight specific. T antigen cosedimented on sucrose gradients with SV40 chromatin, and T antigen-chromatin complexes could be precipitated from the nuclear extract specifically with anti-T serum. From 10 to 20% of viral DNA labeled to steady state with [3H]thymidine for 12 h late in infection or 40 to 50% of replicating viral DNA pulse-labeled for 5 min was associated with T antigen in such immunoprecipitates. After reaction with antibody, most of the T antigen-chromatin complex was stable to washing with 0.5 M NaCl, but only about 20% of the DNA label remained in the precipitate after washing with 0.5 M NaCl-0.4% Sarkosyl. This tightly bound class of T antigen was associated preferentially with a subfraction of pulse-labeled replicating DNA which comigrated with an SV40 form I marker. A tight binding site for T antigen was identified tentatively by removing the histones with dextran sulfate and heparin from immunoprecipitated chromatin labeled with [32P]phosphate to steady state and then digesting the DNA with restriction endonucleases HinfI and HpaII. The site was within the fragment spanning the origin of replication, 0.641 to 0.725 on the SV40 map.  相似文献   

6.
An 8,000-molecular-weight (8K) T antigen was found in all cells transformed by simian virus 40. The 8K T antigen was weakly labeled in vivo with [35S]methionine or 32Pi. A deletion in the human papovavirus BK genome, in the region coding for the carboxy-terminal end of the large T antigen, reduced the size of the 8K T antigen. The last 80 amino acids of the large T antigen include the sequence Asp-Asp-Asp-Asp unique to the activation peptide of trypsinogen. Large T antigen bound diisopropyl fluorophosphate and was retained by D-phenylalanine coupled to Sepharose beads, an affinity adsorbent that can retain chymotrypsin. The large T antigen and the recA protein of Escherichia coli, a known protease, have several properties in common as well as several similar sequences. Antibodies against large T antigen interacted with native recA protein.  相似文献   

7.
The simian virus 40 small T-associated 56,000-Mr (56K) and 32K cellular proteins were shown to be closely related to the polyomavirus medium T-associated 61K and 37K cellular proteins as demonstrated by two-dimensional polyacrylamide gel electrophoresis and V8 protease peptide mapping.  相似文献   

8.
Proteolytic fragments of simian virus 40 tumor (T) antigen and T antigen that was dephosphorylated with alkaline phosphatase bound between 1.5 to 2 times more origin-containing simian virus 40 DNA than did intact T antigen in DNA saturation experiments. Kinetic experiments showed that these treatments also enhanced the rate at which T antigen bound to the DNA. The enhanced binding of T-antigen fragments correlated with the generation of DNA-binding fragments that lacked the NH2-terminal region. Dephosphorylation of T antigen in vitro resulted in the removal of phosphate groups from the NH2-terminal region as well as from the COOH-terminal region. To test the effects of dephosphorylation on the size of the protein, immunoaffinity-purified T antigen was subjected to sedimentation with and without prior treatment with alkaline phosphatase. Most of the purified protein sedimented as a monomer and no significant effect was observed after dephosphorylation, indicating that the enhanced DNA-binding activity was probably not due to the uncovering of additional binding sites buried specifically in oligomerized T antigen. Taken together, these results indicate that in vivo phosphorylation of the NH2-terminal region (residues 106 to 124) decreases the binding of the protein to the DNA origin. The effect is reversed by in vitro dephosphorylation or by proteolysis which removes the highly phosphorylated NH2-terminal arm of the polypeptide. We suggest that phosphorylation inactivates one of two distinct DNA-binding activities on the polypeptide chain perhaps corresponding to two separate regions in T antigen.  相似文献   

9.
10.
11.
Simian virus 40 large T antigen from lytically infected cells has been purified to near homogeneity by immunochromatography of the cell extract on a protein A-Sepharose-monoclonal antibody column. The resulting T antigen retains biochemical activity; i.e., it hydrolyzes ATP and binds to simian virus 40 DNA at the origin of replication.  相似文献   

12.
Mouse embryo cells expressing a wild-type number of insulin-like growth factor I receptors (IGF-IR) (W cells) can be transformed either by simian virus 40 large T antigen (SV40 T) or by overexpressed insulin receptor substrate 1 (IRS-1), singly transfected. Neither SV40 T antigen nor IRS-1, individually, can transform mouse embryo cells with a targeted disruption of the IGF-IR genes (R- cells). However, cotransfection of SV40 T antigen and IRS-1 does transform R- cells. In this study, using different antibodies and different cell lines, we found that SV40 T antigen and IRS-1 are coprecipitated from cell lysates in a specific fashion, regardless of whether the lysates are immunoprecipitated with an antibody to SV40 T antigen or an antibody to IRS-1. The same antibody to SV40 T antigen, however, fails to coprecipitate another substrate of IGF-IR, the transforming protein Shc, and two other signal-transducing molecules, Grb2 and Sos. Finally, an SV40 T antigen lacking the amino-terminal 250 amino acids fails to coprecipitate IRS-1 and also fails to transform R- cells overexpressing mouse IRS-1. These experiments indicate that IRS-1 associates with SV40 T antigen and that this association plays a critical role in the combined ability of these proteins to transform R- cells. This finding is discussed in light of the crucial role of the IGF-IR in the establishment and maintenance of the transformed phenotype.  相似文献   

13.
Simian virus 40 large T antigen is a multifunctional protein that is encoded by the early region of the viral genome. We constructed fusion proteins between simian virus 40 large T antigen and beta-galactosidase by cloning HindIII fragments A and D of the virus into the HindIII sites of expression vectors pUR290, pUR291, and pUR292. Large amounts of the fusion protein were synthesized when the DNA fragment encoding part of simian virus 40 large T antigen was in frame with the lacZ gene of the expression vector. Using Western blotting and a competition radioimmunoassay, we assessed the binding of existing anti-T monoclonal and polyclonal antibodies to the two fusion proteins. Several monoclonal antibodies reacted with the protein encoded by the fragment A construction, but none reacted with the protein encoded by the fragment D construction. However, mice immunized with pure beta-galactosidase-HindIII fragment D fusion protein produced good levels of anti-T antibodies, which immunoprecipitated simian virus 40 large T antigen from lytically infected cells, enabling derivation of monoclonal antibodies to this region of large T antigen. Therefore, the fusion proteins allowed novel epitopes to be discovered on large T antigen and permitted the precise localization of epitopes recognized by existing antibodies. The same approach can also be used to produce antibodies against defined regions of any gene.  相似文献   

14.
Previous studies have demonstrated that mutations at amino acid position 128 of the simian virus 40 large T antigen can alter the subcellular localization of the antigen. A second domain in which mutations can alter localization of the nuclear antigen has been identified by mutations at amino acid positions 185, 186, and 199. Mutations in this region cause the polypeptide to accumulate in both the nucleus and cytoplasm of monkey cells. These T-antigen variants accumulate to near normal levels, but they don't bind to the simian virus 40 origin of DNA replication and are unable to mediate DNA replication. Furthermore, the altered tumor antigens can no longer transform secondary rat cells at normal efficiency, but they retain the ability to transform established mouse and rat cell lines.  相似文献   

15.
We investigated the molecular properties of eight temperature-sensitive mutants of simian virus 40 large T antigen (tsA mutants). The mutants have single amino acid substitutions that block DNA replication at 39 to 41 degrees C in vivo. In vitro, five of the mutant proteins were highly sensitive to a brief heat shock at 39 degrees C, while the three remaining proteins were only partially sensitive at 41 degrees C. We characterized the five most defective mutant proteins, using a variety of biochemical assays for replication functions of T antigen. Heat shock of purified T antigen with a mutation at amino acid 422 significantly impaired the oligomerization, origin-binding, origin-unwinding, ATPase, and helicase functions of T antigen. In contrast, substitution of amino acid 186, 357, 427, or 438 had more selective, temperature-sensitive effects on T-antigen functions. Our findings are consistent with the conclusion that T antigen functions via a hierarchy of interrelated domains. Only the ATPase activity remained intact in the absence of all other functions. Hexamer formation appears to be necessary for core origin-unwinding and helicase activities; the helicase function also requires ATPase activity. All five tsA mutants were impaired in functions important for the initiation of DNA replication, but three mutants retained significant elongation functions.  相似文献   

16.
Primary chimpanzee (Pan troglodytes) hepatocyte cultures were maintained in a serum-free medium containing hormones and growth factors and exhibited the de novo synthesis and secretion of numerous liver-specific plasma proteins for over 3 weeks in vitro. The long-term maintenance of differentiated, primate hepatocytes in this serum-free medium allowed for subsequent immortalization events to occur after infection with the amphoteric retrovirus U19, which encodes the simian virus 40 large T antigen oncogene. Several hepatocyte cell lines were selected and examined for the expression of liver-specific plasma proteins and the capacity to synthesize apolipoproteins. Several cell lines expressed a majority of the plasma proteins investigated, including apolipoproteins A1 and E. These results demonstrate the ability of this serum-free medium to maintain long-term differentiated primate hepatocytes, allowing for the experimental immortalization of this cell type in vitro and the maintenance of differentiated functions in the established cell lines. This methodology should be amenable to the study of the liver and its related diseases.  相似文献   

17.
In simian virus 40-transformed cells, simian virus 40 large T antigen can be detected in different forms separable by sucrose density gradient centrifugation. In our experiments, light forms sedimented around 5 to 7S, oligomers such as tetramers were detected around 16S, and higher aggregates sedimented in a broad distribution reaching above 23S. The oligomers sedimenting at and above 16S could be disassembled into the slowly sedimenting 5 to 7S forms by chelating agents [EDTA or ethylene bis(oxonitrilo)tetraacetate]. After the addition of divalent cations (CaCl2 or MgCl2) in excess of chelating agents, oligomeric forms reassembled and appeared in a sedimentation pattern resembling that observed before treatment with chelating agents. Time course studies permitted the identification of the 5 to 7S forms as precursors upon pulse-labeling (15 min); the 16S and higher oligomers were identified as the successors after a 14-h chase. Treatment of extracts of pulse-chase-labeled cells with chelating agents again disassembled the oligomers, whereas pulse-labeled precursors did not change their 5 to 7S sedimentation pattern. Adding an excess of divalent cations reassembled the pulse-chase-labeled T antigen to oligomers but did not influence the sedimentation behavior of pulse-labeled 5 to 7S precursors. It is therefore reasonable to assume that a posttranslational modulation induces divalent cation binding, leading finally to the oligomerization of T antigen. Thus, some of the multifunctional activities of T antigen can be dictated by divalent cation binding properties.  相似文献   

18.
Chromosomes were prepared from mitotic munjac cells 48 to 72 h after infection with SV40 virus. When stained for SV40 T antigen by indirect immunofluorescence, all chromosomes within an infected cell were fluorescent, indicating the presence of T antigen. Furthermore, the chromosomes were not uniformly stained but appeared to have regions of high and low fluorescence intensity. A variety of controls showed that the banding patterns are specific and highly reproducible and may indeed reflect the binding sites of T antigen. The bright, fluorescent bands T antigen were found to correspond to bands visualized by trypsin-Giesma staining (G-bands) and also by quinacrine staining (Q-bands). Current knowledge of chromosome banding indicates that Q-bands reflect the distribution of AT-rich regions along the chromosome. From the DNA sequence of SV40, it is known that one of the T antigen binding sites contains AT-rich sequences; thus, T antigen banding might be due to the base-specific binding of T antigen to chromatin. In addition, these bands have been implicated as centers for chromosome condensation and units in control of DNA replication. While the functional significance of T antigen binding has yet to be determined, the SV40-muntjac system provides an unusual opportunity to study the interaction of a known regulatory protein with mammalian chromosomes.  相似文献   

19.
To analyze the nature of the nonpermissivity of mouse cells for simian virus 40 (SV40) DNA replication, we isolated mouse cells producing SV40 T antigen (Tag) at levels equal to or greater than that found in COS1 cells. These mouse cells were nonpermissive for the replication of exogenously added SV40 DNA, although purified Tag isolated from these cells was able to support SV40 DNA replication in vitro. Furthermore, when mouse cells expressing Tag were fused to monkey cells, SV40 DNA replication was observed. These results indicate that the mere production of large quantities of wild-type SV40 Tag does not overcome the block of nonpermissivity in mouse cells and that cellular factors must play a critical role.  相似文献   

20.
Four (groups of) phosphorylation sites exist in the large T antigen of simian virus 40, and they involve at least two serine and two threonine residues (Van Roy et al. J. Virol. 45:315-331, 1983). All the phosphorylation sites were found to be modified and again dephosphorylated at discrete rates, with phosphoserine residues having the highest turnover rate. The measured half-lives ranged between 3 h (for the carboxy-terminal phosphoserine site) and 5.5 h (for the amino-terminal phosphothreonine site). The influence of four temperature-sensitive A mutations on phosphorylation of large T antigen was also examined. At restrictive temperature, phosphorylation of the carboxy-terminal phosphoserine in mutated large T antigen was found to be particularly impaired. These data emphasize the physiological importance of the latter phosphorylation site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号