首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A computational model of a stealth strategy inspired by the apparent mating tactics of male hoverflies is presented. The stealth strategy (motion camouflage) paradoxically allows a predator to approach a moving prey in such a way that it appears to be a stationary object. In the model, the predators are controlled by neural sensorimotor systems that base their decisions on realistic levels of input information. They are shown to be able to employ motion camouflage to approach prey that move along both real hoverfly flight paths and artificially generated flight paths. The camouflaged approaches made demonstrate that the control systems have an ability to predict future prey movements. This is illustrated using two- and three-dimensional simulations.  相似文献   

2.
Camouflage – adaptations that prevent detection and/or recognition – is a key example of evolution by natural selection, making it a primary focus in evolutionary ecology and animal behaviour. Most work has focused on camouflage as an anti‐predator adaptation. However, predators also display specific colours, patterns and behaviours that reduce visual detection or recognition to facilitate predation. To date, very little attention has been given to predatory camouflage strategies. Although many of the same principles of camouflage studied in prey translate to predators, differences between the two groups (in motility, relative size, and control over the time and place of predation attempts) may alter selection pressures for certain visual and behavioural traits. This makes many predatory camouflage techniques unique and rarely documented. Recently, new technologies have emerged that provide a greater opportunity to carry out research on natural predator–prey interactions. Here we review work on the camouflage strategies used by pursuit and ambush predators to evade detection and recognition by prey, as well as looking at how work on prey camouflage can be applied to predators in order to understand how and why specific predatory camouflage strategies may have evolved. We highlight that a shift is needed in camouflage research focus, as this field has comparatively neglected camouflage in predators, and offer suggestions for future work that would help to improve our understanding of camouflage.  相似文献   

3.
We present a model of predator and prey grouping strategies using game theory. As predators respond strategically to prey behavior and vice versa, the model is based on a co-evolution approach. Focusing on the "many eyes-many mouths" trade-off, this model considers the benefits and costs of being in a group for hunting predators and foraging prey: predators in a group have more hunting success than solitary predators but they have to share the prey captured; prey in a group face a lower risk of predation but greater competition for resources than lone prey. The analysis of the model shows that the intersections of four curves define distinct areas in the parameter space, corresponding to different strategies used by predators and prey at equilibrium. The model predictions are in accordance with empirical evidence that an open habitat encourages group living, and that low risks of predation favor lone prey. Under some conditions, continuous cycling of the relative frequencies of the different strategies may occur. In this situation, the proportions of grouped vs. solitary predators and prey oscillate over time.  相似文献   

4.
Predators and prey are often engaged in a game where their expected fitnesses are affected by their relative spatial distributions. Game models generally predict that when predators and prey move at similar temporal and spatial scales that predators should distribute themselves to match the distribution of the prey's resources and that prey should be relatively uniformly distributed. These predictions should better apply to sit-and-pursue and sit-and-wait predators, who must anticipate the spatial distributions of their prey, than active predators that search for their prey. We test this with an experiment observing the spatial distributions and estimating the causes of movements between patches for Pacific tree frog tadpoles (Pseudacris regilla), a sit-and-pursue dragonfly larvae predator (Rhionaeschna multicolor), and an active salamander larval predator (Ambystoma tigrinum mavortium) when a single species was in the arena and when the prey was with one of the predators. We find that the sit-and-pursue predator favors patches with more of the prey's algae resources when the prey is not in the experimental arena and that the prey, when in the arena with this predator, do not favor patches with more resources. We also find that the active predator does not favor patches with more algae and that prey, when with an active predator, continue to favor these higher resource patches. These results suggest that the hunting modes of predators impact their spatial distributions and the spatial distributions of their prey, which has potential to have cascading effects on lower trophic levels.  相似文献   

5.
William A Mitchell 《Oikos》2009,118(7):1073-1083
Behavioral games between predators and prey often involve two sub-games: 'pre-encounter' games affecting the rate of encounter between predators and prey (e.g. predator–prey space games, Sih 2005 ), and 'post-encounter' games that influence the outcome of encounters (e.g. waiting games at prey refugia, Hugie 2003 , and games of vigilance, Brown et al. 1999 ). Most models, however, focus on only one or the other of these two sub-games.
I investigated a multi-behavioral game between predators and prey that integrated both pre-encounter and post-encounter behaviors. These behaviors included landscape-scale movements by predators and prey, a type of prey vigilance that increases immediately after an encounter and then decays over time ('ratcheting vigilance'), and predator management of prey vigilance. I analyzed the game using a computer-based evolutionary algorithm. This algorithm embedded an individual-based model of ecological interactions within a dynamic adaptive process of mutation and selection. I investigated how evolutionarily stable strategies (ESS) varied with the predators' learning ability, killing efficiency, density and rate of movement. I found that when predators learn prey location, random prey movement can be an ESS. Increased predator killing efficiency reduced prey movement, but only if the rate of predator movement was low. Predators countered ratcheting vigilance by delaying their follow-up attacks; however, this delay was reduced in the presence of additional predators. The interdependence of pre-and post-encounter behaviors revealed by the evolutionary algorithm suggests an intricate co-evolution of multi-behavioral predator–prey behavioral strategies.  相似文献   

6.
Diverse functions have been assigned to the visual appearance of webs, spiders and web decorations, including prey attraction, predator deterrence and camouflage. Here, we review the pertinent literature, focusing on potential camouflage and mimicry. Webs are often difficult to detect in a heterogeneous visual environment. Static and dynamic web distortions are used to escape visual detection by prey, although particular silk may also attract prey. Recent work using physiological models of vision taking into account visual environments rarely supports the hypothesis of spider camouflage by decorations, but most often the prey attraction and predator confusion hypotheses. Similarly, visual modelling shows that spider coloration is effective in attracting prey but not in conveying camouflage. Camouflage through colour change might be used by particular crab spiders to hide from predator or prey on flowers of different coloration. However, results obtained on a non-cryptic crab spider suggest that an alternative function of pigmentation may be to avoid UV photodamage through the transparent cuticle. Numerous species are clearly efficient locomotory mimics of ants, particularly in the eyes of their predators. We close our paper by highlighting gaps in our knowledge.  相似文献   

7.
Camouflage is one of the most widespread forms of anti-predator defence and prevents prey individuals from being detected or correctly recognized by would-be predators. Over the past decade, there has been a resurgence of interest in both the evolution of prey camouflage patterns, and in understanding animal cognition in a more ecological context. However, these fields rarely collide, and the role of cognition in the evolution of camouflage is poorly understood. Here, we review what we currently know about the role of both predator and prey cognition in the evolution of prey camouflage, outline why cognition may be an important selective pressure driving the evolution of camouflage and consider how studying the cognitive processes of animals may prove to be a useful tool to study the evolution of camouflage, and vice versa. In doing so, we highlight that we still have a lot to learn about the role of cognition in the evolution of camouflage and identify a number of avenues for future research.  相似文献   

8.
Many classical models of food patch use under predation risk assume that predators impose patch-specific predation risks independent of prey behavior. These models predict that prey should leave a chosen patch only if and when the food depletes below some critical level. In nature, however, prey individuals may regularly move among food patches, even in the apparent absence of food depletion. We suggest that such prey movement is part of a predator-prey "shell game", in which predators attempt to learn prey location, and the prey attempt to be unpredictable in space. We investigate this shell game using an individual-based model that allows predators to update information about prey location, and permits prey to move with some random component among patches, but with reduced energy intake. Our results show the best prey strategy depends on what the predator does. A non-learning (randomly moving) predator favors non-moving prey – moving prey suffer higher starvation and predation. However, a learning predator favors prey movement. In general, the best prey strategy involves movement biased toward, but not completely committed to, the richer food patch. The strategy of prey movement remains beneficial even in combination with other anti-predator defenses, such as prey vigilance.  相似文献   

9.
Theoretical work on intraguild predation suggests that if a top predator and an intermediate predator share prey, the system will be stable only if the intermediate predator is better at exploiting the prey, and the top predator gains significantly from consuming the intermediate predator. In mammalian carnivore systems, however, there are examples of top predator species that attack intermediate predator species, but rarely or never consume the intermediate predator. We suggest that top predators attacking intermediate predators without consuming them may not only reduce competition with the intermediate predators, but may also increase the vigilance of the intermediate predators or alter the vigilance of their shared prey, and that this behavioral response may help to maintain the stability of the system. We examine two models of intraguild predation, one that incorporates prey vigilance, and a second that incorporates intermediate predator vigilance. We find that stable coexistence can occur when the top predator has a very low consumption rate on the intermediate predator, as long as the attack rate on the intermediate predator is relatively large. However, the system is stable when the top predator never consumes the intermediate predator only if the two predators share more than one prey species. If the predators do share two prey species, and those prey are vigilant, increasing top predator attack rates on the intermediate predator reduces competition with the intermediate predator and reduces vigilance by the prey, thereby leading to higher top predator densities. These results suggest that predator and prey behavior may play an important dynamical role in systems with intraguild predation.  相似文献   

10.
A common predator or anti-predator strategy involves camouflage based on background matching. In some systems, the background is an organism whose fitness is affected by the predator-prey interaction. In these cases, the phenotype of the background species may evolve to affect the degree of background matching in the predator-prey interaction. For example, some flower species (the background) are inhabited by camouflaged ambush predators that attack visiting pollinators. These flowers have a fitness interest in the outcome of the predator-prey interaction because flowers depend on pollinator visitations for reproduction. Therefore, floral colour might evolve relative to predator colour so as to influence the detectability of resident predators. I have created a three-player game, based on Signal Detection Theory, to model the co-evolution of predator and prey/pollinator behavioural strategies with floral colour. This model makes two general predictions: (1) Constraints on predator distributions favour the evolution of flowers that match the predators’ colour because they prevent predators from overexploiting these flowers; (2) factors that produce less discriminating pollinators also favour the evolution of flowers that match the predators’ colour because these pollinators are willing to land on these flowers even if the safety of the flower is in doubt.  相似文献   

11.
In situations of aggressive mimicry, predators adapt their colorto that of the substrate on which they sit for hunting, a behaviorthat is presumed to hide them from prey as well as from theirown predators. Females of few crab-spider species encountersuch situations when lying on flowers to ambush pollinators.To evaluate the efficiency of spider camouflage on flowers,we measured by spectroradiometry adult female Thomisus onustusand marguerite daisies, Leucanthemum vulgare. We compared chromaticcontrast (color used for short-range detection) of each pairof spider and flower to detection thresholds computed in thevisual systems of both Hymenopteran prey and passerine birdpredator. We also computed achromatic contrast (brightness)used for long-range detection. In both visual systems, eachindividual spider was efficiently matching the precise colorof the flower center on which it was hunting. Being significantlydarker than flowers, crab-spiders could in theory be detectedat long range by either predator or prey using achromatic contrast.However, long-range detection is unlikely, owing to small spidersize. Spiders also generated significant chromatic and achromaticcontrasts to both Hymenoptera and bird when moving on flowerperiphery. Our study is the first to identify which photoreceptorsof both prey and predator are involved in camouflage. The analysissuggests more research on bird predation and vision to determineto which extent bird predators effectively constrain spidercrypsis.  相似文献   

12.
Benefit by contrast: an experiment with live aposematic prey   总被引:4,自引:1,他引:3  
Aposematic prey often have a coloration that contrasts withthe background. One beneficial effect of such conspicuous colorationis that it produces faster and more durable avoidance by predators.Another suggested benefit is that prey that contrast with thebackground are more quickly discerned and recognized as unpalatableby experienced predators. To further investigate the effectsof prey contrast on predator behavior, I conducted an experimentwith young chicks (Gallus gallus domesticus) as predators onlive aposematic and nonaposematic prey. Birds with prior experienceof both prey types were allowed into an arena with both palatableprey and aposematic prey on backgrounds that either closelymatched or contrasted with the coloration of the aposematicprey. Also, the time a bird had available to decide to attacka prey was manipulated by including a competing chick or not.The experienced birds showed greater attack latencies for aposematicprey on more contrasting backgrounds, and aposematic prey werealso attacked to a greater extent when on a matching background.The presence of a competitor generated similar effects, wherebirds in high competition attacked more and faster comparedto birds subjected to lower degree of competition, but therewas no interaction between competition and contrast. Thus,the experiment provides evidence that prey contrast againstthe background may produce better recognition and avoidance,independently of predator viewing time.  相似文献   

13.
This paper investigates several strategies for prey and predator in both bounded and unbounded domains, assuming they have the same speed. The work describes how the prey should move to escape from the predator and how predator should move to catch the prey. The approach is agent-based and explicitly tracks movement of individuals as prey and predator. We show that the prey escapes one or two competing predators, while might be caught in the case of three predators. The paper also describes a strategy for finding a well camouflaged static prey which emits signals.  相似文献   

14.
Temperature effects on predator–prey interactions are fundamental to better understand the effects of global warming. Previous studies never considered local adaptation of both predators and prey at different latitudes, and ignored the novel population combinations of the same predator–prey species system that may arise because of northward dispersal. We set up a common garden warming experiment to study predator–prey interactions between Ischnura elegans damselfly predators and Daphnia magna zooplankton prey from three source latitudes spanning >1500 km. Damselfly foraging rates showed thermal plasticity and strong latitudinal differences consistent with adaptation to local time constraints. Relative survival was higher at 24 °C than at 20 °C in southern Daphnia and higher at 20 °C than at 24 °C, in northern Daphnia indicating local thermal adaptation of the Daphnia prey. Yet, this thermal advantage disappeared when they were confronted with the damselfly predators of the same latitude, reflecting also a signal of local thermal adaptation in the damselfly predators. Our results further suggest the invasion success of northward moving predators as well as prey to be latitude‐specific. We advocate the novel common garden experimental approach using predators and prey obtained from natural temperature gradients spanning the predicted temperature increase in the northern populations as a powerful approach to gain mechanistic insights into how community modules will be affected by global warming. It can be used as a space‐for‐time substitution to inform how predator–prey interaction may gradually evolve to long‐term warming.  相似文献   

15.
We consider the effect of a top predator on the stability of a system of competing prey species. In the first instance, this is done in detail for two prey species where the predators either behave in a completely random way, interfere with each other or switch to the more abundant prey at any time. The analysis is then extended to the case of n similar prey species, either competing equally or competing with their two nearest neighbours in exploiting a one-dimensional resource spectrum. It is found that predator switching can produce local stability when the prey species overlap completely and even when the competition coefficients are greater than one. This, however, is more difficult to attain for nearest neighbour competition. In either case switching is advantageous to the predators, since it allows them to coexist successfully with their prey over a wider range of conditions.  相似文献   

16.
In inverted biomass pyramids (IBPs) prey are outnumbered by their predators when measured by biomass. We investigate how prey should behave in the face of danger from higher predator biomass, and how anti-predator behavior (in the form of vigilance) can, in turn, affect the predator–prey system. In this study, we incorporate anti-predator behaviors into a Lotka–Volterra predator–prey model in the form of fixed and facultative vigilance. Facultative vigilance models behavior as a dynamic foraging game, allowing us to assess optimal behavioral responses in the context of IBPs using a dynamical fitness optimization approach. We model vigilance as a tradeoff between safety and either the prey's maximum growth rate or its carrying capacity. We assess the population dynamics of predators and prey with fear responses, and investigate the role fear plays on trophic structure. We found that the ecology of fear plays an important role in predator–prey systems, impacting trophic structure and the occurrence of IBPs. Fixed vigilance works against IBP structure by always reducing the predator–prey biomass ratio at equilibrium with increasing levels of vigilance. Facultative vigilance can actually promote IBPs, as prey can now adjust their vigilance levels to cope with increased predation and the costs associated with vigilance. This is especially true when the effectiveness of vigilance is low and predators are very lethal. In general, these trends are true whether the costs of vigilance are felt on the prey's maximum growth rate or its carrying capacity. Just as the ecology of fear, when first introduced, was used to explain why top carnivores are rare in terrestrial systems, it can also be used to understand how big fierce predators can be common in IBPs.  相似文献   

17.
Predators and prey often engage in a game where predators attemptto be in areas with higher prey densities and prey attempt tobe in areas with lower predator densities. A few models havepredicted the resulting distributions of predators and prey,but little empirical data exist to test these predictions andto examine how abiotic and biotic factors shape the distributions.Thus, we observed how Anax dragonfly nymphs and Pacific treefrog tadpoles (Pseudacris regilla) either together or separatelydistributed themselves in an arena with a high- and a low-preyresource patch. Trials were conducted in high- and low-lightconditions to manipulate predation risk and to view the effectsof this abiotic factor. Counter to the model predictions, wefound that predators were not more abundant in high-resource(HR) patches, and they thus did not force prey toward beinguniformly distributed. Using a model selection approach to assesswhat factors affected predator and prey patch-switching movement,we found that prey more often left patches that had more predatorspresent, but predators surprisingly more often left patcheswith more prey present. Light levels did not affect predationrisk; however, in the dark with the associated reduction invisual information predators preferred HR patches. This causeda lower coincidence of prey and predators in patches. Predatorsalso switched patches less often when they occupied the samepatch as the other predator. This suggests that predator distributions,and indirectly prey distributions, are affected by the riskof intraguild predation.  相似文献   

18.
A mathematical model is presented for the dynamics of predator-prey interactions when predators do not consume prey (or clumps of prey) in their entirety. Using a combination of analytical and numerical methods, I demonstrate that predator-mediated changes in the distribution of intact and partially consumed prey can affect the outcome of competition between predators in unexpected ways. In some cases, two predators can coexist on a single prey species owing to tradeoffs between the ability to consume prey completely and other competitive abilities. In other cases, predators exhibit frequency-dependent dynamics in which the first predator to occupy the habitat can prevent the other from invading. Conditions for stable coexistence usually expand if the larger predator scatters uneaten prey parts, if prey renewal includes both small and large items, or if the predator with the smaller retrieval capacity is poor at catching intact prey relative to the other predator.  相似文献   

19.
Understanding the strength and diversity of predator‐prey interactions among species is essential to understand ecosystem consequences of population‐level variation. Directly quantifying the predatory behaviour of wild fishes at large spatial scales (>100 m) in the open sea is fraught with difficulties. To date the only empirical approach has been to search for correlations in the abundance of predators and their putative prey. As an example we use this approach to search for predators of the keystone crown‐of‐thorns starfish. We show that this approach is unlikely to detect predator–prey linkages because the theoretical relationship is non‐linear, resulting in multiple possible prey responses for single given predator abundance. Instead we suggest some indication of the strength and ecosystem importance of a predator–prey relationship can be gained by using the abundance of both predators and their putative prey to parameterize functional response models.  相似文献   

20.
Theories of the evolution of warning signals are typically expressed using analytic and computational models, most of which attribute aspects of predator psychology as the key factors facilitating the evolution of warning signals. Sherratt provides a novel and promising perspective with a model that considers the coevolution of predator and prey populations, showing how predators may develop a bias towards attacking cryptic prey in preference to conspicuous prey. Here, we replicate the model as an individual-based simulation and find, in accordance with Sherratt, that predators evolve a bias towards attacking cryptic prey. We then use a Monte Carlo simulation to calculate the relative survivorships of cryptic and conspicuous prey and stress that, as it stands, the model does not predict the evolution or stability of warning signals. We extend the model by giving predators continuous attack strategies and by allowing the evolution of prey conspicuousness: results are robust to the first modification but, in all cases, cryptic prey always enjoy a higher survivorship than conspicuous prey. When conspicuousness is allowed to evolve, prey quickly evolve towards crypsis, even when runaway coevolution is enabled. Sherratt's approach is promising, but other aspects of predator psychology, besides their innate response, remain vital to our understanding of warning signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号