首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Comparative accuracy of methods for protein sequence similarity search   总被引:2,自引:0,他引:2  
MOTIVATION: Searching a protein sequence database for homologs is a powerful tool for discovering the structure and function of a sequence. Two new methods for searching sequence databases have recently been described: Probabilistic Smith-Waterman (PSW), which is based on Hidden Markov models for a single sequence using a standard scoring matrix, and a new version of BLAST (WU-BLAST2), which uses Sum statistics for gapped alignments. RESULTS: This paper compares and contrasts the effectiveness of these methods with three older methods (Smith- Waterman: SSEARCH, FASTA and BLASTP). The analysis indicates that the new methods are useful, and often offer improved accuracy. These tools are compared using a curated (by Bill Pearson) version of the annotated portion of PIR 39. Three different statistical criteria are utilized: equivalence number, minimum errors and the receiver operating characteristic. For complete-length protein query sequences from large families, PSW's accuracy is superior to that of the other methods, but its accuracy is poor when used with partial-length query sequences. False negatives are twice as common as false positives irrespective of the search methods if a family-specific threshold score that minimizes the total number of errors (i.e. the most favorable threshold score possible) is used. Thus, sensitivity, not selectivity, is the major problem. Among the analyzed methods using default parameters, the best accuracy was obtained from SSEARCH and PSW for complete-length proteins, and the two BLAST programs, plus SSEARCH, for partial-length proteins.   相似文献   

2.
MOTIVATION: It is widely recognized that homology search and ortholog clustering are very useful for analyzing biological sequences. However, recent growth of sequence database size makes homolog detection difficult, and rapid and accurate methods are required. RESULTS: We present a novel method for fast and accurate homology detection, assuming that the Smith-Waterman (SW) scores between all similar sequence pairs in a target database are computed and stored. In this method, SW alignment is computed only if the upper bound, which is derived from our novel inequality, is higher than the given threshold. In contrast to other methods such as FASTA and BLAST, this method is guaranteed to find all sequences whose scores against the query are higher than the specified threshold. Results of computational experiments suggest that the method is dozens of times faster than SSEARCH if genome sequence data of closely related species are available.  相似文献   

3.
MOTIVATION: Sequence alignment methods that compare two sequences (pairwise methods) are important tools for the detection of biological sequence relationships. In genome annotation, multiple methods are often run and agreement between methods taken as confirmation. In this paper, we assess the advantages of combining search methods by comparing seven pairwise alignment methods, including three local dynamic programming algorithms (PRSS, SSEARCH and SCANPS), two global dynamic programming algorithms (GSRCH and AMPS) and two heuristic approximations (BLAST and FASTA), individually and by pairwise intersection and union of their result lists at equal p-value cut-offs. RESULTS: When applied singly, the dynamic programming methods SCANPS and SSEARCH gave significantly better coverage (p=0.01) compared to AMPS, GSRCH, PRSS, BLAST and FASTA. Results ranked by BLAST p-values gave significantly better coverage compared to ranking by BLAST e-values. Of 56 combinations of eight methods considered, 19 gave significant increases in coverage at low error compared to the parent methods at an equal p-value cutoff. The union of results by BLAST (p-value) and FASTA at an equal p-value cutoff gave significantly better coverage than either method individually. The best overall performance was obtained from the intersection of the results from SSEARCH and the GSRCH62 global alignment method. At an error level of five false positives, this combination found 444 true positives, a significant 12.4% increase over SSEARCH applied alone.  相似文献   

4.
We describe a new strategy for utilizing multiple sequence alignment information to detect distant relationships in searches of sequence databases. A single sequence representing a protein family is enriched by replacing conserved regions with position-specific scoring matrices (PSSMs) or consensus residues derived from multiple alignments of family members. In comprehensive tests of these and other family representations, PSSM-embedded queries produced the best results overall when used with a special version of the Smith-Waterman searching algorithm. Moreover, embedding consensus residues instead of PSSMs improved performance with readily available single sequence query searching programs, such as BLAST and FASTA. Embedding PSSMs or consensus residues into a representative sequence improves searching performance by extracting multiple alignment information from motif regions while retaining single sequence information where alignment is uncertain.  相似文献   

5.
Comparison of methods for searching protein sequence databases.   总被引:12,自引:2,他引:10       下载免费PDF全文
We have compared commonly used sequence comparison algorithms, scoring matrices, and gap penalties using a method that identifies statistically significant differences in performance. Search sensitivity with either the Smith-Waterman algorithm or FASTA is significantly improved by using modern scoring matrices, such as BLOSUM45-55, and optimized gap penalties instead of the conventional PAM250 matrix. More dramatic improvement can be obtained by scaling similarity scores by the logarithm of the length of the library sequence (In()-scaling). With the best modern scoring matrix (BLOSUM55 or JO93) and optimal gap penalties (-12 for the first residue in the gap and -2 for additional residues), Smith-Waterman and FASTA performed significantly better than BLASTP. With In()-scaling and optimal scoring matrices (BLOSUM45 or Gonnet92) and gap penalties (-12, -1), the rigorous Smith-Waterman algorithm performs better than either BLASTP and FASTA, although with the Gonnet92 matrix the difference with FASTA was not significant. Ln()-scaling performed better than normalization based on other simple functions of library sequence length. Ln()-scaling also performed better than scores based on normalized variance, but the differences were not statistically significant for the BLOSUM50 and Gonnet92 matrices. Optimal scoring matrices and gap penalties are reported for Smith-Waterman and FASTA, using conventional or In()-scaled similarity scores. Searches with no penalty for gap extension, or no penalty for gap opening, or an infinite penalty for gaps performed significantly worse than the best methods. Differences in performance between FASTA and Smith-Waterman were not significant when partial query sequences were used. However, the best performance with complete query sequences was obtained with the Smith-Waterman algorithm and In()-scaling.  相似文献   

6.
W R Pearson 《Genomics》1991,11(3):635-650
The sensitivity and selectivity of the FASTA and the Smith-Waterman protein sequence comparison algorithms were evaluated using the superfamily classification provided in the National Biomedical Research Foundation/Protein Identification Resource (PIR) protein sequence database. Sequences from each of the 34 superfamilies in the PIR database with 20 or more members were compared against the protein sequence database. The similarity scores of the related and unrelated sequences were determined using either the FASTA program or the Smith-Waterman local similarity algorithm. These two sets of similarity scores were used to evaluate the ability of the two comparison algorithms to identify distantly related protein sequences. The FASTA program using the ktup = 2 sensitivity setting performed as well as the Smith-Waterman algorithm for 19 of the 34 superfamilies. Increasing the sensitivity by setting ktup = 1 allowed FASTA to perform as well as Smith-Waterman on an additional 7 superfamilies. The rigorous Smith-Waterman method performed better than FASTA with ktup = 1 on 8 superfamilies, including the globins, immunoglobulin variable regions, calmodulins, and plastocyanins. Several strategies for improving the sensitivity of FASTA were examined. The greatest improvement in sensitivity was achieved by optimizing a band around the best initial region found for every library sequence. For every superfamily except the globins and immunoglobulin variable regions, this strategy was as sensitive as a full Smith-Waterman. For some sequences, additional sensitivity was achieved by including conserved but nonidentical residues in the lookup table used to identify the initial region.  相似文献   

7.
MOTIVATION: Comprehensive performance assessment is important for improving sequence database search methods. Sensitivity, selectivity and speed are three major yet usually conflicting evaluation criteria. The average precision (AP) measure aims to combine the sensitivity and selectivity features of a search algorithm. It can be easily visualized and extended to analyze results from a set of queries. Finally, the time-AP plot can clearly show the overall performance of different search methods. RESULTS: Experiments are performed based on the SCOP database. Popular sequence comparison algorithms, namely Smith-Waterman (SSEARCH), FASTA, BLAST and PSI-BLAST are evaluated. We find that (1) the low-complexity segment filtration procedure in BLAST actually harms its overall search quality; (2) AP scores of different search methods are approximately in proportion of the logarithm of search time; and (3) homologs in protein families with many members tend to be more obscure than those in small families. This measure may be helpful for developing new search algorithms and can guide researchers in selecting most suitable search methods. AVAILABILITY: Test sets and source code of this evaluation tool are available upon request.  相似文献   

8.
Issac B  Raghava GP 《BioTechniques》2002,33(3):548-50, 552, 554-6
Similarity searches are a powerful method for solving important biological problems such as database scanning, evolutionary studies, gene prediction, and protein structure prediction. FASTA is a widely used sequence comparison tool for rapid database scanning. Here we describe the GWFASTA server that was developed to assist the FASTA user in similarity searches against partially and/or completely sequenced genomes. GWFASTA consists of more than 60 microbial genomes, eight eukaryote genomes, and proteomes of annotatedgenomes. Infact, it provides the maximum number of databases for similarity searching from a single platform. GWFASTA allows the submission of more than one sequence as a single query for a FASTA search. It also provides integrated post-processing of FASTA output, including compositional analysis of proteins, multiple sequences alignment, and phylogenetic analysis. Furthermore, it summarizes the search results organism-wise for prokaryotes and chromosome-wise for eukaryotes. Thus, the integration of different tools for sequence analyses makes GWFASTA a powerful toolfor biologists.  相似文献   

9.
Most existing Mass Spectra (MS) analysis programs are automatic and provide limited opportunity for editing during the interpretation. Furthermore, they rely entirely on publicly available databases for interpretation. VEMS (Virtual Expert Mass Spectrometrist) is a program for interactive analysis of peptide MS/MS spectra imported in text file format. Peaks are annotated, the monoisotopic peaks retained, and the b-and y-ion series identified in an interactive manner. The called peptide sequence is searched against a local protein database for sequence identity and peptide mass. The report compares the calculated and the experimental mass spectrum of the called peptide. The program package includes four accessory programs. VEMStrans creates protein databases in FASTA format from EST or cDNA sequence files. VEMSdata creates a virtual peptide database from FASTA files. VEMSdist displays the distribution of masses up to 5000 Da. VEMSmaldi searches singly charged peptide masses against the local database.  相似文献   

10.
Two new sets of scoring matrices are introduced: H2 for the protein sequence comparison and T2 for the protein sequence-structure correlation. Each element of H2 or T2 measures the frequency with which a pair of amino acid types in one protein, k-residues apart in the sequence, is aligned with another pair of residues, of given amino acid types (for H2) or in given structural states (for T2), in other structurally homologous proteins. There are four types, corresponding to the k-values of 1 to 4, for both H2 and T2. These matrices were set up using a large number of structurally homologous protein pairs, with little sequence homology between the pair, that were recently generated using the structure comparison program SHEBA. The two scoring matrices were incorporated into the main body of the sequence alignment program SSEARCH in the FASTA package and tested in a fold recognition setting in which a set of 107 test sequences were aligned to each of a panel of 3,539 domains that represent all known protein structures. Six procedures were tested; the straight Smith-Waterman (SW) and FASTA procedures, which used the Blosum62 single residue type substitution matrix; BLAST and PSI-BLAST procedures, which also used the Blosum62 matrix; PASH, which used Blosum62 and H2 matrices; and PASSC, which used Blosum62, H2, and T2 matrices. All procedures gave similar results when the probe and target sequences had greater than 30% sequence identity. However, when the sequence identity was below 30%, a similar structure could be found for more sequences using PASSC than using any other procedure. PASH and PSI-BLAST gave the next best results.  相似文献   

11.
12.
Macintosh sequence analysis software   总被引:3,自引:0,他引:3  
The analysis of information in nucleotide and amino acid sequence data from an investigator’s own laboratory, or from the ever-growing worldwide databases, is critically dependent on well planned and written software. Although the most powerful packages previously have been confined to workstations, there has been a dramatic increase over the last few years in the sophistication of the programs available for personal computers, as the speed and power of these have increased. A wide choice of software is available for the Macintosh, including the LaserGene suite of programs from DNAStar. This review assesses the strengths and weaknesses of LaserGene and concludes that it provides a useful and comprehensive range of sequence analysis tools.  相似文献   

13.
The proliferation of genome sequence data has led to the development of a number of tools and strategies that facilitate computational analysis. These methods include the identification of motif patterns, membership of the query sequences in family databases, metabolic pathway involvement and gene proximity. We re-examined the completely sequenced genome of Thermotoga maritima by employing the combined use of the above methods. By analyzing all 1877 proteins encoded in this genome, we identified 193 cases of conflicting annotations (10%), of which 164 are new function predictions and 29 are amendments of previously proposed assignments. These results suggest that the combined use of existing computational tools can resolve inconclusive sequence similarities and significantly improve the prediction of protein function from genome sequence.  相似文献   

14.
Bioinformatic tools have become essential to biologists in their quest to understand the vast quantities of sequence data, and now whole genomes, which are being produced at an ever increasing rate. Much of these sequence data are single-pass sequences, such as sample sequences from organisms closely related to other organisms of interest which have already been sequenced, or cDNAs or expressed sequence tags (ESTs). These single-pass sequences often contain errors, including frameshifts, which complicate the identification of homologues, especially at the protein level. Therefore, sequence searches with this type of data are often performed at the nucleotide level. The most commonly used sequence search algorithms for the identification of homologues are Washington University's and the National Center for Biotechnology Information's (NCBI) versions of the BLAST suites of tools, which are to be found on websites all over the world. The work reported here examines the use of these tools for comparing sample sequence datasets to a known genome. It shows that care must be taken when choosing the parameters to use with the BLAST algorithms. NCBI's version of gapped BLASTn gives much shorter, and sometimes different, top alignments to those found using Washington University's version of BLASTn (which also allows for gaps), when both are used with their default parameters. Most of the differences in performance were found to be due to the choices of default parameters rather than underlying differences between the two algorithms. Washington University's version, used with defaults, compares very favourably with the results obtained using the accurate but computationally intensive Smith-Waterman algorithm.  相似文献   

15.
16.
There are many computer programs that can match tandem mass spectra of peptides to database-derived sequences; however, situations can arise where mass spectral data cannot be correlated with any database sequence. In such cases, sequences can be automatically deduced de novo, without recourse to sequence databases, and the resulting peptide sequences can be used to perform homologous nonexact searches of sequence databases. This article describes details on how to implement both a de novo sequencing program called “Lutefisk,” and a version of FASTA that has been modified to account for sequence ambiguities inherent in tandem mass spectrometry data.  相似文献   

17.
18.
Sequence based homology studies play an important role in evolutionary tracing and classification of proteins. Various methods are available to analyze biological sequence information. However, with the advent of proteomics era, there is a growing demand for analysis of huge amount of biological sequence information, and it has become necessary to have programs that would provide speedy analysis. ISHAN has been developed as a homology analysis package, built on various sequence analysis tools viz FASTA, ALIGN, CLUSTALW, PHYLIP and CODONW (for DNA sequences). This JAVA application offers the user choice of analysis tools. For testing, ISHAN was applied to perform phylogenetic analysis for sets of Caspase 3 DNA sequences and NF-kappaB p105 amino acid sequences. By integrating several tools it has made analysis much faster and reduced manual intervention.  相似文献   

19.
In recent years we have witnessed a growth in sequencing yield, the number of samples sequenced, and as a result–the growth of publicly maintained sequence databases. The increase of data present all around has put high requirements on protein similarity search algorithms with two ever-opposite goals: how to keep the running times acceptable while maintaining a high-enough level of sensitivity. The most time consuming step of similarity search are the local alignments between query and database sequences. This step is usually performed using exact local alignment algorithms such as Smith-Waterman. Due to its quadratic time complexity, alignments of a query to the whole database are usually too slow. Therefore, the majority of the protein similarity search methods prior to doing the exact local alignment apply heuristics to reduce the number of possible candidate sequences in the database. However, there is still a need for the alignment of a query sequence to a reduced database. In this paper we present the SW#db tool and a library for fast exact similarity search. Although its running times, as a standalone tool, are comparable to the running times of BLAST, it is primarily intended to be used for exact local alignment phase in which the database of sequences has already been reduced. It uses both GPU and CPU parallelization and was 4–5 times faster than SSEARCH, 6–25 times faster than CUDASW++ and more than 20 times faster than SSW at the time of writing, using multiple queries on Swiss-prot and Uniref90 databases  相似文献   

20.
Plant genome databases play an important role in the archiving and dissemination of data arising from the international genome projects. Recent developments in bioinformatics, such as new software tools, programming languages and standards, have produced better access across the Internet to the data held within them.An increasing emphasis is placed on data analysis and indeed many resources now provide tools allied to the databases, to aid in the analysis and interpretation of the data. However, a considerable wealth of information lies untapped by considering the databases as single entities and will only be exploited by linking them with a wide range of data sources. Data from research programs such as comparative mapping and germplasm studies may be used as tools, to gain additional knowledge but without additional experimentation. To date, the current plant genome databases are not yet linked comprehensively with each other or with these additional resources, although they are clearly moving toward this. Here, the current wealth of public plant genome databases is reviewed, together with an overview of initiatives underway to bind them to form a single plant genome infrastructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号