首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The matrix metalloproteinase enzyme MMP-13 plays a key role in the degradation of type II collagen in cartilage and bone in osteoarthritis (OA). An effective MMP-13 inhibitor would provide a disease modifying therapy for the treatment of arthritis, although this goal still continues to elude the pharmaceutical industry due to issues with safety. Our efforts have resulted in the discovery of a series of hydroxamic acid inhibitors of MMP-13 that do not significantly inhibit MMP-2 (gelatinase-1). MMP-2 has been implicated in the musculoskeletal side effects resulting from pan-MMP inhibition due to findings from spontaneously occurring human MMP-2 deletions. Analysis of the SAR of hundreds of previously prepared hydroxamate based MMP inhibitors lead us to 2-naphthylsulfonamide substituted hydroxamates which exhibited modest selectivity for MMP-13 versus MMP-2. This Letter describes the lead optimization of 1 and identification of inhibitors exhibiting >100-fold selectivity for MMP-13 over MMP-2.  相似文献   

2.
Modification of -biphenylsulfonamidocarboxylic acids led to potent and selective MMP-13 inhibitors. Compound 16 showed 100% oral bioavailability in rats and demonstrated >50% inhibition of bovine cartilage degradation at 10 ng/mL.  相似文献   

3.
Matrix metalloproteinase-2 (MMP-2), a ubiquitously expressed zinc-dependent endopeptidase, and poly(ADP-ribosyl) polymerase (PARP), a nuclear enzyme regulating DNA repair, are activated by nitroxidative stress associated with various pathologies. As MMP-2 plays a detrimental role in heart injuries resulting from enhanced nitroxidative stress, where PARP and MMP inhibitors are beneficial, we hypothesized that PARP inhibitors may affect MMP-2 activity. Using substrate degradation assays to determine MMP-2 activity we found that four PARP inhibitors (3-AB, PJ-34, 5-AIQ, and EB-47) inhibited 64 kDa MMP-2 in a concentration-dependent manner. The IC50 values of PJ-34 and 5-AIQ were in the high micromolar range and comparable to those of known MMP-2 inhibitors doxycycline, minocycline or o-phenanthroline, whereas those for 3-AB and EB-47 were in the millimolar range. Co-incubation of PARP inhibitors with doxycycline showed an additive inhibition of MMP-2 that was significant for 3-AB alone. These data demonstrate that the protective effects of some PARP inhibitors may include inhibition of MMP-2 activity.  相似文献   

4.
Matrix metalloproteinase (MMP)-2 and MMP-9 are closely related metalloproteinases that are implicated in angiogenesis. The two proteins have a similar domain structure and highly homologous catalytic domains, making them an excellent comparative model for understanding the structural basis of substrate recognition by the MMP family. Although the two MMPs exhibit some overlap in substrate recognition, our recent work showed that MMP-2 can cleave a set of peptide substrates that are only poorly recognized by MMP-9 (Chen, E. I., Kridel, S. J., Howard, E. W., Li, W., Godzik, A., and Smith, J. W. (2002) J. Biol. Chem. 277, 4485-4491). Mutations at the P(2) position of these peptide substrates dramatically reduced their selectivity for MMP-2. Inspection of the corresponding S(2) pocket of the substrate-binding cleft of the protease reveals that MMP-9 contains an Asp, whereas MMP-2 contains Glu. Here, we test the hypothesis that this conservative substitution has a role in substrate selectivity. Mutation of Glu(412) in MMP-2 to Asp significantly reduced the hydrolysis of selective substrates, with only a minor effect on hydrolysis of non-selective substrates. The predominant effect of the mutation is at the level of k(cat), or turnover rate, with reductions reaching as high as 37-fold. The residues that occupy this position in other MMPs are highly variable, providing a potential structural basis for substrate recognition across the MMP family.  相似文献   

5.
Here we report molecular dynamics (MD) and free energy perturbation (FEP) simulations applied to hydroxamate-matrix metalloproteinase-2 (MMP-2) complex systems. We have developed some new force field parameters for the hydroxamate functional group that were not included in the AMBER94 force field but were necessary in our simulations. For the representation of the active zinc center, a bonded model was adopted in which restrained electrostatic potential fitting (RESP) charges were used as the electrostatic representation of this model. Using the resulted bonded model, FEP simulations predict the relative binding free energy in good agreement with the experimental value. By analyzing the molecular dynamics (MD) trajectories of the two complex systems, we can provide an explanation of why one of the two inhibitors is favored over the other. The results provide a chemical insight into the interactions between inhibitor and enzyme, and can indicate changes in the inhibitor that would enhance inhibitor–enzyme interactions.Figure The scheme of the binding site  相似文献   

6.
Broad range of selectivity possesses serious limitation for the development of matrix metalloproteinase-2 (MMP-2) inhibitors for clinical purposes. To develop potent and selective MMP-2 inhibitors, initially multiple molecular modeling techniques were adopted for robust design. Predictive and validated regression models (2D and 3D QSAR and ligand-based pharmacophore mapping studies) were utilized for estimating the potency whereas classification models (Bayesian and recursive partitioning analyses) were used for determining the selectivity of MMP-2 inhibitors over MMP-9. Bayesian model fingerprints were used to design selective lead molecule which was modified using structure-based de novo technique. A series of designed molecules were prepared and screened initially for inhibitions of MMP-2 and MMP-9, respectively, as these are designed followed by other MMPs to observe the broader selectivity. The best active MMP-2 inhibitor had IC50 value of 24 nM whereas the best selective inhibitor (IC50 = 51 nM) showed at least 4 times selectivity to MMP-2 against all tested MMPs. Active derivatives were non-cytotoxic against human lung carcinoma cell line—A549. At non-cytotoxic concentrations, these inhibitors reduced intracellular MMP-2 expression up to 78% and also exhibited satisfactory anti-migration and anti-invasive properties against A549 cells. Some of these active compounds may be used as adjuvant therapeutic agents in lung cancer after detailed study.  相似文献   

7.
Osteopontin (OPN) is a secreted phosphoprotein shown to function in wound healing, inflammation, and tumor progression. Expression of OPN is often co-localized with members of the matrix metalloproteinase (MMP) family. We report that OPN is a novel substrate for two MMPs, MMP-3 (stromelysin-1) and MMP-7 (matrilysin). Three cleavage sites were identified for MMP-3 in human OPN, and two of those sites were also cleaved by MMP-7. These include hydrolysis of the human Gly166-Leu167, Ala201-Tyr202 (MMP-3 only), and Asp210-Leu211 peptide bonds. Only the N-terminal Gly-Leu cleavage site is conserved in rat OPN (Gly151-Leu152). These sites are distinct from previously reported cleavage sites in OPN for the proteases thrombin or enterokinase. We found evidence for the predicted MMP cleavage fragments of OPN in vitro in tumor cell lines, and in vivo in remodeling tissues such as the postpartum uterus, where OPN and MMPs are co-expressed. Furthermore, cleavage of OPN by MMP-3 or MMP-7 potentiated the function of OPN as an adhesive and migratory stimulus in vitro through cell surface integrins. We predict that interaction of MMPs with OPN at tumor and wound healing sites in vivo may be a mechanism of regulation of OPN bioactivity.  相似文献   

8.
The catalytic domains of the matrix metalloproteinases (MMPs) are structurally homologous, raising questions as to the degree of distinction, or overlap, in substrate recognition. The primary objective of the present study was to define the substrate recognition profile of MMP-2, a protease that was historically referred to as gelatinase A. By cleaving a phage peptide library with recombinant MMP-2, four distinct sets of substrates were identified. The first set is structurally related to substrates previously reported for other MMPs. These substrates contain the PXX/X(Hy) consensus motif (where X(Hy) is a hydrophobic residue) and are not generally selective for MMP-2 over the other MMPs tested. Two other groups of substrates were selected from the phage library with similar frequency. Substrates in group II contain the L/IXX/X(Hy) consensus motif. Substrates in group III contain a consensus motif with a sequence of X(Hy)SX/L, and the fourth set of substrates contain the HXX/X(Hy) sequence. Substrates in Group II, III, and IV were found to be 8- to almost 200-fold more selective for MMP-2 over MMP-9. To gain an understanding of the structural basis for substrate selectivity, individual residues within substrates were mutated, revealing that the P(2) residue is a key element in conferring selectivity. These findings indicate that MMP-2 and MMP-9 exhibit different substrate recognition profiles and point to the P(2) subsite as a primary determinant in substrate distinction.  相似文献   

9.
Matrix metalloproteinase-12 (MMP-12, macrophage elastase) is a member of the MMP family that is responsible for the degradation of extracellular matrix, and is associated with the inflammatory process of chronic obstructive pulmonary disease (COPD). COPD, characterized by progressive and irreversible airflow obstruction, is recently a major cause of mortality and morbidity worldwide. Herein, to develop radioiodinated probes for the early diagnosis of COPD, we designed and synthesized novel MMP-12-targeted dibenzofuran compounds (13) with a variety of linker structures (carbamate, amide, and sulfonamide). In competitive enzyme activity assays, it was revealed that the linker structures significantly affected the inhibitory activity against and selectivity for MMP-12. Compound 1, with carbamate linker, demonstrated potent MMP-12 inhibitory activity (IC50?=?8.5?nM) compared to compound 2, with amide linker, and compound 3, with sulfonamide linker. Using bromo-substituted carbamate 13 as a radioiodination precursor, [125I]1 was successfully prepared to high radiochemical purity (over 98%) and good specific radioactivity (4.1?GBq/μmol). These results suggest that radioiodinated compound 1 is potent as a novel MMP-12-targeted probe.  相似文献   

10.
Surfactant protein D (SP-D) and CD14 are important innate immune defense molecules that mediate clearance of pathogens and apoptotic cells from the lung. To test whether CD14 expression and function were influenced by SP-D, the surface expression of CD14 was assessed on alveolar macrophages from SP-D-/- mice. CD14 was reduced on alveolar macrophages from SP-D-/- mice and was associated with reduced uptake of LPS and decreased production of TNF-alpha after LPS stimulation. CD14 is proteolytically cleaved from the cell surface to form a soluble peptide. Soluble CD14 (sCD14) was increased in the bronchoalveolar lavage fluid from SP-D-/- mice. Because matrix metalloproteinase (MMP)-9 and -12 activities were increased in the lungs of SP-D-/- mice, the role of these metalloproteases in the production of sCD14 was assessed. sCD14 was decreased in both MMP(9-/-)/SP-D-/- and MMP12(-/-)/SP-D-/- mice demonstrating MMP-9 and MMP-12 contribute to proteolytic shedding of CD14. The increased sCD14 seen in SP-D-/- mice was dependent upon the activation of MMP-12 via an MMP-9-dependent mechanism. Supporting this observation, MMP-12 caused the release of sCD14 from RAW 264.7 cells in vitro. In conclusion, SP-D influences innate host defense, in part, by regulating sCD14 in a process mediated by MMP-9 and MMP-12.  相似文献   

11.
12.
Elastic fibers in the dermis play an important role in skin elasticity. The desmosine crosslinking structure constructed of lysyl oxidase (LOX) in elastic fibers contributes to elasticity, while elastic fibers are primarily degraded by one of the matrix metalloproteinases (MMPs), MMP-12. We investigated the gender differences and diurnal variation of these enzymes. Gender-based differences in LOX mRNA expression were detected, and were significantly lower in females. In contrast, higher MMP-12 mRNA expression was observed in the light period, suggesting that elastic fibers might be degraded in the light rather than the dark period.  相似文献   

13.
We investigated the gene expression of matrix metalloproteinases-9 (MMP-9) and tissue inhibitors of matrix metalloproteinases-1 (TIMP-1) in peripheral blood cells from infected cattle with Mycobacterium avium subsp. paratuberculosis (Map) in the ELISA-negative subclinical stage compared with uninfected control cattle. Significant decreased MMP-9 expression and increased TIMP-1 expression were found in peripheral blood cells from Map-infected cattle after stimulation with Map lysate and Map purified protein derivative (PPD) than in control cattle by real-time RT-PCR analysis. In contrast to the uninfected controls, the activity of MMP-9 was also decreased in peripheral blood cell culture supernatants from Map-infected cattle at 24?hr after Map lysate and MapPPD stimulation by gelatin zymography analysis. As a result, the MMP-9 may play an important role in the development of Mycobacterium avium subsp. paratuberculosis disease.  相似文献   

14.
A series of novel matrix metalloproteinase inhibitors is described in which selectivity between MMP and 'sheddase' activity has been achieved and which demonstrate potent in vivo activity in models of arthritis and cancer.  相似文献   

15.

Background

The elastolytic enzyme matrix metalloproteinase (MMP)-12 has been implicated in the development of airway inflammation and remodeling. We investigated whether human airway smooth muscle cells could express and secrete MMP-12, thereby participating in the pathogenesis of airway inflammatory diseases.

Methods

Laser capture microdissection was used to collect smooth muscle cells from human bronchial biopsy sections. MMP-12 mRNA expression was analysed by quantitative real-time RT-PCR. MMP-12 protein expression and secretion from cultured primary airway smooth muscle cells was further analysed by Western blot. MMP-12 protein localization in bronchial tissue sections was detected by immunohistochemistry. MMP-12 activity was determined by zymography. The TransAM AP-1 family kit was used to measure c-Jun activation and nuclear binding. Analysis of variance was used to determine statistical significance.

Results

We provide evidence that MMP-12 mRNA and protein are expressed by in-situ human airway smooth muscle cells obtained from bronchial biopsies of normal volunteers, and of patients with asthma, COPD and chronic cough. The pro-inflammatory cytokine, interleukin (IL)-1β, induced a >100-fold increase in MMP-12 gene expression and a >10-fold enhancement in MMP-12 activity of primary airway smooth muscle cell cultures. Selective inhibitors of extracellular signal-regulated kinase, c-Jun N-terminal kinase and phosphatidylinositol 3-kinase reduced the activity of IL-1β on MMP-12, indicating a role for these kinases in IL-1β-induced induction and release of MMP-12. IL-1β-induced MMP-12 activity and gene expression was down-regulated by the corticosteroid dexamethasone but up-regulated by the inflammatory cytokine tumour necrosis factor (TNF)-α through enhancing activator protein-1 activation by IL-1β. Transforming growth factor-β had no significant effect on MMP-12 induction.

Conclusion

Our findings indicate that human airway smooth muscle cells express and secrete MMP-12 that is up-regulated by IL-1β and TNF-α. Bronchial smooth muscle cells may be an important source of elastolytic activity, thereby participating in remodeling in airway diseases such as COPD and chronic asthma.  相似文献   

16.
Matrix metalloproteinases (MMPs) are a large group of enzymes responsible for matrix degradation. Among them, the family of gelatinases (MMP-2/gelatinase A and MMP-9/gelatinase B) is overproduced in the joints of patients with rheumatoid arthritis. Because of their degradative effects on the extracellular matrix, gelatinases have been believed to play an important role in progression and cartilage degradation in this disease, although their precise roles are yet to be defined. To clarify these roles, we investigated the development of Ab-induced arthritis, one of the murine models of rheumatoid arthritis, in MMP-2 or MMP-9 knockout (KO) mice. Surprisingly, the MMP-2 KO mice exhibited severe clinical and histologic arthritis than wild-type mice. The MMP-9 KO mice displayed milder arthritis. Recovery from exacerbated arthritis in the MMP-2 KO mice was possible by injection of wild-type fibroblasts. These results indicated a suppressive role of MMP-2 and a pivotal role of MMP-9 in the development of inflammatory joint disease.  相似文献   

17.
Zhao  Wei  Zhao  Yuan-Ling  Liu  Ming  Liu  Lian  Wang  Yun 《Molecular biology reports》2021,48(11):7509-7516
Molecular Biology Reports - Methamphetamine is a highly addictive central stimulant with extensive and strong neurotoxicity. The neurotoxicity of methamphetamine is closely related to the...  相似文献   

18.
Matrix metalloproteases (MMPs) are endogenous proteases that are responsible for degradation of extracellular matrix (ECM) proteins and cell surface antigens. The breakdown of ECM participates in the local invasion and distant metastases of malignant tumors. Canine transmissible venereal tumor (CTVT) is a naturally occurring contagious round cell neoplasm of dogs that affects mainly the external genitalia of both sexes. CTVT generally is a locally invasive tumor, but distant metastases also are common in puppies and immunocompromised dogs. We investigated the immune expressions and activities of MMP-2 and MMP-9 in CTVT. The presence of these enzymes in tumor cells and tissue homogenates was demonstrated by immunohistochemistry and western blotting. We used gelatin substrate zymography to evaluate the activities of MMP-2 and MMP-9 enzymes in tumor homogenates. We found that tumor cells expressed both MMP-2 and MMP-9. Electrophoretic bands corresponding to MMP-9 and MMP-2 were identified in immunoblots and clear bands that corresponded to the active forms of MMP-2 and MMP-9 also were detected in gelatin zymograms. Our study is the first detailed documentation of MMPs in CTVT.  相似文献   

19.
Arachidonate 12-lipoxygenases with reference to their selective inhibitors   总被引:4,自引:0,他引:4  
Lipoxygenase is a dioxygenase recognizing a 1-cis,4-cis-pentadiene of polyunsaturated fatty acids. The enzyme oxygenates various carbon atoms of arachidonic acid as a substrate and produces 5-, 8-, 12- or 15-hydroperoxyeicosatetraenoic acid with a conjugated diene chromophore. The enzyme is referred to as 5-, 8-, 12- or 15-lipoxygenase, respectively. Earlier we found two isoforms of 12-lipoxygenase, leukocyte- and platelet-type enzymes, which were distinguished by substrate specificity, catalytic activity, primary structure, gene intron size, and antigenicity. Recently, the epidermis-type enzyme was found as the third isoform. Attempts have been made to find isozyme-specific inhibitors of 12-lipoxygenase, and earlier we found hinokitiol, a tropolone, as a potent inhibitor selective for the platelet-type 12-lipoxygenase. More recently, we tested various catechins of tea leaves and found that (-)-gallocatechin gallate was a potent and selective inhibitor of human platelet 12-lipoxygenase with an IC50 of 0.14 microM. The compound was much less active with 12-lipoxygenase of leukocyte-type, 15-, 8-, and 5-lipoxygenases, and cyclooxygenases-1 and -2.  相似文献   

20.
Fulcher YG  Van Doren SR 《Biochemistry》2011,50(44):9488-9499
How does matrix metalloproteinase-12 (MMP-12 or metalloelastase) degrade elastin with high specific activity? Nuclear magnetic resonance suggested soluble elastin covers surfaces of MMP-12 far from its active site. Two of these surfaces have been found, by mutagenesis guided by the BINDSIght approach, to affect degradation and affinity for elastin substrates but not a small peptide substrate. Main exosite 1 has been extended to Asp124 that binds calcium. Novel exosite 2 comprises residues from the II-III loop and β-strand I near the back of the catalytic domain. The high degree of exposure of these distal exosites may make them accessible to elastin made more flexible by partial hydrolysis. Importantly, the combination of one lesion each at exosites 1 and 2 and the active site decreased the catalytic competence toward soluble elastin by 13-18-fold to the level of MMP-3, homologue and poor elastase. Double-mutant cycle analysis of conservative mutations of Met156 (exosite 2) and either Asp124 (exosite 1) or Ile180 (active site) showed they had additive effects. Compared to polar substitutions observed in other MMPs, Met156 enhanced affinity and Ile180 the k(cat) for soluble elastin. Both residues detracted from the higher folding stability with polar mutations. This resembles the trend in enzymes of an inverse relationship between folding stability and activity. Restoring Asp124 from combination mutants enhanced the k(cat) for soluble elastin. In elastin degradation, exosites 1 and 2 contributed in a manner independent of each other and Ile180 at the active site, but with partial coupling to Ala182 near the active site. The concept of weak, separated interactions coalescing somewhat independently can be extended to this proteolytic digestion of a protein from fibrils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号