首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.

Suaeda fruticosa and S. monoica are important halophytes for ecological rehabilitation of saline lands. We report differential physio-chemical, photosynthetic, and chlorophyll fluorescence responses in these halophytes under 100 mM sodium chloride (NaCl), 50% strength (16.25 ppt) of seawater (SW)-imposed salinity, and 10% polyethylene glycol 6000 imposed osmotic stress at 380 (ambient) and 1200 (elevated) µmol mol–1 CO2 concentrations. SW salinity enhanced the growth in both species; however, compared with S. fruticosa, the S. monoica exhibited comparatively better growth and biomass accumulation under saline conditions at elevated CO2. Results demonstrated better photosynthetic performances of S. monoica under stress conditions at both levels of CO2, and this resulted in higher accumulation of carbon, nitrogen, sugar, and starch contents. S. monoica exhibited improved antenna size, electron transfer at PSII donor side, and efficient working of photosynthetic machinery at elevated CO2, which might be due to efficient upstream utilization of reducing power to fix the CO2. The δ13C results supported the operation of C4 CO2 fixation in S. monoica and C3 or intermediate pathway of CO2 fixation in S. fruticosa. Lower accumulation of reactive oxygen species, reduced membrane damage, lowered solute potential, and higher accumulation of proline and polyphenol contents indicated elevated CO2-induced abiotic stress tolerance in Suaeda. Higher activity of antioxidant enzymes in both species at both levels of CO2 help plants to combat the oxidative stress. Upregulation of NADP-dependent malic enzyme and NADP-dependent malate dehydrogenase genes indicated their role in abiotic stress tolerance as well as photosynthetic carbon (C) sequestration. Operation of C4 type CO2 fixation in S. monoica and an intermediate CO2 fixation in S. fruticosa could be the possible reason for the superior photosynthetic efficiency of S. monoica under stress conditions at elevated CO2.

  相似文献   

4.
In this study, the response of N2 fixation to elevated CO2 was measured in Scirpus olneyi, a C3 sedge, and Spartina patens, a C4 grass, using acetylene reduction assay and 15N2 gas feeding. Field plants grown in PVC tubes (25 cm long, 10 cm internal diameter) were used. Exposure to elevated CO2 significantly (P < 0·05) caused a 35% increase in nitrogenase activity and 73% increase in 15N incorporated by Scirpus olneyi. In Spartina patens, elevated CO2 (660 ± 1 μ mol mol 1) increased nitrogenase activity and 15N incorporation by 13 and 23%, respectively. Estimates showed that the rate of N2 fixation in Scirpus olneyi under elevated CO2 was 611 ± 75 ng 15N fixed plant 1 h 1 compared with 367 ± 46 ng 15N fixed plant 1 h 1 in ambient CO2 plants. In Spartina patens, however, the rate of N2 fixation was 12·5 ± 1·1 versus 9·8 ± 1·3 ng 15N fixed plant 1 h 1 for elevated and ambient CO2, respectively. Heterotrophic non-symbiotic N2 fixation in plant-free marsh sediment also increased significantly (P < 0·05) with elevated CO2. The proportional increase in 15N2 fixation correlated with the relative stimulation of photosynthesis, in that N2 fixation was high in the C3 plant in which photosynthesis was also high, and lower in the C4 plant in which photosynthesis was relatively less stimulated by growth in elevated CO2. These results are consistent with the hypothesis that carbon fixation in C3 species, stimulated by rising CO2, is likely to provide additional carbon to endophytic and below-ground microbial processes.  相似文献   

5.
High-light effects on CO2 fixation gradients across leaves   总被引:2,自引:1,他引:1  
Chlorophyll fluorescence and internal patterns of 14CO2 fixation were measured in sun and shade leaves of spinach after treatment with various light intensities. When sun leaves were irradiated with 2000μmol m?2 s?1 for 2h, FV/FM decreased by about 15%, but 14CO2 fixation was unaffected, whereas shade leaves exhibited a 21% decrease in Fv/FM and a 25% decrease in 14CO2 fixation. Irradiation of sun and shade leaves with 4000μmol m?1 for 4 h decreased FV/FM by 30% in sun leaves and 40% in shade leaves, while total 14CO2 fixation decreased by 41% in sun leaves and 55% in shade leaves. After light treatment, gradients of CO2 fixation across leaves were determined by measuring 14CO2 fixed in paradermal leaf sections after a 10s pulse of 14CO2. Gradients of 14CO2 fixation in control sun and shade leaves were identified when expressed on a relative basis and normalized for leaf depth. Treatment of leaves with 2000 μmol PAR m?2 s?1 for 2h did not after patterns of carbon fixation across sun leaves, but slightly altered the pattern in shade leaves. In contrast, treatment of sun and shade leaves with 4000μmol m?2 s?1 for 4h decreased carbon fixation more in the palisade mesophyll cells than in the spongy mesophyll cells of sun and shade leaves, and fixation in medial tissue of shade leaves was dramatically decreased compared to the adaxial and abaxial tissue. The interaction between leaf anatomy and biochemical parameters involved in tolerance to photoinhibition in spinach is discussed.  相似文献   

6.
Portis AR 《Plant physiology》1982,70(2):393-396
The effect of external inorganic phosphate (Pi) on starch synthesis in isolated spinach (Spinacia oleracea American Hybrid No. 424) chloroplasts in the presence of millimolar concentrations of 3-phosphoglycerate (PGA) and/or dihydroxyacetone phosphate (DAP) was examined. Whereas CO2 fixation was relatively constant as the ratio of the external phosphate to the PGA + DAP varied from 1:3 to 3:1, starch synthesis varied from 17% to 2% of the CO2 fixation rate. With DAP alone, maximal starch synthesis was about 10% of the CO2 fixation rate. The data demonstrate that the Pi/(PGA + DAP) ratio in the cytoplasm of plant cells could serve to regulate the flow of newly fixed carbon into starch without alterations in the rate of CO2 fixation.  相似文献   

7.
Chloroflexus aurantiacus OK-70 fl was grown photoautotrophically with hydrogen as electron source. The cultures were subjected to long term labelling experments with 13C-labelled acetate or alanine in the presence of sodium fluoroacetate. The presence of fluoroacetate caused the cells to accumulate large amounts of polyglucose which was hydrolysed and analysed by NMR. The labelling patterns of glucose were symmetric and in agreement with carbohydrate synthesis from acetate and CO2 via pyruvate synthase. The content of carbon derived from added acetate was highest in C2 and C5 of glucose, at least 20% higher than in C1 and C6. About one third of the glucose carbon was derived from added acetate, the rest being from CO2. Contrary to expectations, in glucose formed in the presence of C1-labelled acetate C1 and C6 contained more label than C2 and C5, and with C2-labelled acetate as the tracer glucose was mainly labelled in C2 and C5. Labelled CO2 was formed from acetate labelled at either position. The labelling data indicate a new metabolic pathway in C. aurantiacus. It is suggested that the cells form C1-labelled acetyl-CoA from C2-labelled acetyl-CoA and vice versa by a cyclic mechanism involving concomitant CO2 fixation and that this cycle is the part of the autotrophic CO2 fixation pathways in C. aurantiacus in which acetyl-CoA is formed from CO2.The polyglucose of C. aurantiacus appears to have predominantly (1–4)-linked structure with about 10% (1–6)-linkages as revealed by 13C-NMR.  相似文献   

8.
土壤微生物既参与土壤有机碳的分解也是土壤有机碳转化和固定的驱动者,是影响土壤碳循环和有机碳稳定性的关键因素。然而,保护性耕作(秸秆还田)如何通过调节土壤微生物碳循环功能基因组成来影响土壤CO2释放的机理尚不明确。因此,依托中国科学院东北地理与农业生态研究所长春保护性耕作观测站,借助鸟枪法宏基因组测序技术,分析了玉米连作系统不同耕作方式(免耕(NT)、秋翻(MP)以及常规耕作(CT))对土壤CO2释放速率、碳水化合物活性酶(CAZy)、碳循环功能基因(碳固定、甲烷代谢以及碳水化合物代谢)组成的影响。研究表明:基于生长季节土壤CO2释放速率6年平均值分析发现,生长季前期免耕土壤的平均CO2释放速率显著低于秋翻和常规耕作,分别比秋翻低28%(5月份)、11%(6月份)和23%(7月份);比常规耕作低31%(5月份)、19%(6月份)和7%(7月份)。基于CAZy数据库注释结果,发现耕作处理显著影响一些糖苷水解酶(如GH102、GH5_38和GH13_17)、糖基转移酶(如GT39)和多糖裂解酶(如PL17和PL5_1)的基因丰度,与常规耕作相比,秸秆还田的免耕和秋翻处理的这些差异基因的相对丰度较高。基于京都基因与基因组百科全书(KEGG)数据库注释结果,发现耕作方式显著影响土壤碳循环功能基因组成(Adonis,多元方差分析,R2=0.45;P=0.006),且免耕处理土壤的碳固定、甲烷代谢以及碳水化合物代谢功能基因组成不同于常规耕作和秋翻处理,单独聚为一类。免耕土壤上调的碳固定功能基因的相对丰度(所有上调功能基因相对丰度的平均值)分别比常规耕作和秋翻高17%和11%,而下调的2个功能基因(K01007和K00170)的丰度分别低19%(CT)、21%(MP)和14%(CT)、17%(MP)。免耕土壤上调的甲烷代谢基因相对丰度分别较常规耕作和秋翻高15%和10%;下调基因的丰度分别低13%(CT)和11%(MP)。免耕土壤上调的碳水化合物代谢功能基因丰度较常规耕作和秋翻高23%和14%;下调的基因丰度分别低25%(CT)和18%(MP)。冗余分析(db-RDA)表明土壤容重及土壤水溶性有机碳(DOC)是驱动土壤碳循环功能基因组成差异的主要因子(P<0.05),且免耕土壤上调的碳固定功能基因(K00625、K01676、K09709、K00925和K14470等)、甲烷代谢基因(K03520、K00830、K10713、K15633和K00625等)和碳水化合物代谢功能基因(K00886、K00830、K01676、K00117和K00114等)与土壤DOC、容重或含水量呈显著正相关。此外,研究发现土壤CO2释放速率与土壤碳循环功能基因组成显著相关(R2=0.80;P<0.01),尤其是与一些碳水化合物代谢功能基因显著相关。这些结果说明免耕处理通过影响土壤理化性质改变土壤碳循环过程,且推断免耕秸秆还田和减少干扰的叠加效应通过调节碳循环功能基因组成来提高土壤固碳潜力。  相似文献   

9.
10.
11.
When cells of Chlorococcum littorale that had been grown in air (air-grown cells) were transferred to extremely high CO2 concentrations (>20%), active photosynthesis resumed after a lag period which lasted for 1–4 days. In contrast, C. littorale cells which had been grown in 5% CO2 (5% CO2-grown cells) could grow in 40% CO2 without any lag period. When air-grown cells were transferred to 40% CO2, the quantum efficiency of PS II (ΦII) decreased greatly, while no decrease in ΦII was apparent when the 5% CO2-grown cells were transferred to 40% CO2. In contrast to air-grown cells, 5% CO2-grown cells showed neither extracellular nor intracellular carbonic anhydrase (CA) activity. Upon the acclimation of 5% CO2-grown cells to air, photosynthetic susceptibility to 40% CO2 was induced. This change was associated with the induction of CA. In addition, neither suppression of photosynthesis nor arrest of growth was apparent when ethoxyzolamide (EZA), a membrane-permeable inhibitor of CA, had been added before transferring air-grown cells of C. littorale to 40% CO2. The intracellular pH value (pHi) decreased from 7.0 to 6.4 when air-grown C. littorale cells were exposed to 40% CO2 for 1–2 h, but no such decrease in pHi was apparent in the presence of EZA. Both air- and 5% CO2-grown cells of Chlorella sp. UK001, which was also resistant to extremely high CO2 concentrations, grew in 40% CO2 without any lag period. The activity of CA was much lower in air-grown cells of this alga than those in air-grown C. littorale cells. These results prompt us to conclude that intracellular CA caused intracellular acidification and hence inhibition of photosynthetic carbon fixation when air-grown C. littorale cells were exposed to excess concentrations of CO2. No such harmful effect of intracellular CA was observed in Chlorella sp. UK001 cells. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Summary The daily course of CO2 and H2O exchange in cladodes of Opuntia inermis was studied at four sites in Eastern Australia. On most occasions cladode water contents were high and nocturnal stomatal opening resulted in substantial uptake of CO2 and synthesis of about 130 equiv cm-2 of malic acid during the night. Under water stress nocturnal stomatal opening was confined to the latter part of the night and acid synthesis was reduced to about 40 equiv cm-2. Night temperature had little effect on acid synthesis, which responded primarily to rainfall and changed from the stressed condition within 2–3 days in irrigation experiments. On many occasions following summer rainfall stomata opened for 4 h in the late afternoon permitting net CO2 fixation which may contribute about 25% of the total carbon assimilated. This CO2 fixation was insufficient to have a marked impact on the 13C value of the Opuntia cladodes. CO2 fixation in the light occurred in conjunction with maximum dark CO2 fixation under mesic conditions. Dark CO2 fixation rates were 3 to 5 times greater than those recorded in desert cacti under favorable conditions. Relative growth rates calculated on the basic of CO2 exchange correspond to measured relative growth rates of 0.05 g g-1 dry wt day-1 which prevailed for 60–90 days in summer. The capacity for very active CO2 fixation in the dark and light following summer rainfall and the capacity to persist at low levels of metabolic activity through summer drought are discussed in relation to the success of this introduced species in this habitat.  相似文献   

13.
Detached roots and nodules of the N2-fixing species, Albus glutinosa (European black alder), actively assimilate CO2. The maximum rates of dark CO2 fixation observed for detached nodules and roots were 15 and 3 micromoles CO2 fixed per gram dry weight per hour, respectively. The net incorporation of CO2 in these tissues was catalyzed by phosphoenolpyruvate carboxylase which produces organic acids, some of which are used in the synthesis of the amino acids, aspartate, glutamate, and citrulline and by carbamyl phosphate synthetase. The latter accounts for approximately 30 to 40% of the CO2 fixed and provides carbamyl phosphate for the synthesis of citrulline. Results of labeling studies suggest that there are multiple pools of malate present in nodules. The major pool is apparently metabolically inactive and of unknown function while the smaller pool is rapidly utilized in the synthesis of amino acids. Dark CO2 fixation and N2 fixation in nodules decreased after treatment of nodulated plants with nitrate while the percentage of the total 14C incorporated into organic acids increased. Phosphoenolpyruvate carboxylase and carbamyl phosphate synthetase play key roles in the synthesis of amino acids including citrulline and in the metabolism of N2-fixing nodules and roots of alder.  相似文献   

14.
The fixation of inorganic carbon has been documented in all three domains of life and results in the biosynthesis of diverse organic compounds that support heterotrophic organisms. The primary aim of this study was to assess carbon dioxide fixation in high-temperature Fe(III)-oxide mat communities and in pure cultures of a dominant Fe(II)-oxidizing organism (Metallosphaera yellowstonensis strain MK1) originally isolated from these environments. Protein-encoding genes of the complete 3-hydroxypropionate/4-hydroxybutyrate (3-HP/4-HB) carbon dioxide fixation pathway were identified in M. yellowstonensis strain MK1. Highly similar M. yellowstonensis genes for this pathway were identified in metagenomes of replicate Fe(III)-oxide mats, as were genes for the reductive tricarboxylic acid cycle from Hydrogenobaculum spp. (Aquificales). Stable-isotope (13CO2) labeling demonstrated CO2 fixation by M. yellowstonensis strain MK1 and in ex situ assays containing live Fe(III)-oxide microbial mats. The results showed that strain MK1 fixes CO2 with a fractionation factor of ∼2.5‰. Analysis of the 13C composition of dissolved inorganic C (DIC), dissolved organic C (DOC), landscape C, and microbial mat C showed that mat C is from both DIC and non-DIC sources. An isotopic mixing model showed that biomass C contains a minimum of 42% C of DIC origin, depending on the fraction of landscape C that is present. The significance of DIC as a major carbon source for Fe(III)-oxide mat communities provides a foundation for examining microbial interactions that are dependent on the activity of autotrophic organisms (i.e., Hydrogenobaculum and Metallosphaera spp.) in simplified natural communities.  相似文献   

15.
Autotrophic carbon dioxide (CO2) fixation by microbes is ubiquitous in the environment and potentially contributes to the soil organic carbon (SOC) pool. However, the multiple autotrophic pathways of microbial carbon assimilation and fixation in paddy soils remain poorly characterized. In this study, we combine metagenomic analysis with 14C-labelling to investigate all known autotrophic pathways and CO2 assimilation mechanisms in five typical paddy soils from southern China. Marker genes of six autotrophic pathways are detected in all soil samples, which are dominated by the cbbL genes (67%–82%) coding the ribulose-bisphosphate carboxylase large chain in the Calvin cycle. These marker genes are associated with a broad range of phototrophic and chemotrophic genera. Significant amounts of 14C-CO2 are assimilated into SOC (74.3–175.8 mg 14C kg−1) and microbial biomass (5.2–24.1 mg 14C kg−1) after 45 days incubation, where more than 70% of 14C-SOC was concentrated in the relatively stable humin fractions. These results show that paddy soil microbes contain the genetic potential for autotrophic carbon fixation spreading over broad taxonomic ranges, and can incorporate atmospheric carbon into organic components, which ultimately contribute to the stable SOC pool.  相似文献   

16.
The pathway of autotrophic CO2 fixation in Methanobacterium thermoautotrophicum has been investigated by long term labelling of the organism with isotopic acetate and pyruvate while exponentially growing on H2 plus CO2. Maximally 2% of the cell carbon were derived from exogeneous tracer, 98% were synthesized from CO2. Since growth was obviously autotrophic the labelled compounds functioned as tracers of the cellular acetyl CoA and pyruvate pool during cell carbon synthesis from CO2. M. thermoautotrophicum growing in presence of U-14C acetate incorporated 14C into cell compounds derived from acetyl CoA (N-acetyl groups) as well as into compounds derived from pyruvate (alanine), oxaloacetate (aspartate), -ketoglutarate (glutamate), hexosephosphates (galactosamine), and pentosephosphates (ribose). The specific radioactities of N-acetylgroups and of the three amino acids were identical. The hexosamine exhibited a two times higher specific radioactivity, and the pentose a 1.6 times higher specific radioactivity than e.g. alanine. M. thermoautotrophicum growing in presence of 3-14C pyruvate, however, did not incorporate 14C into cell compounds directly derived from acetyl CoA. Those compounds derived from pyruvate, dicarboxylic acids and hexosephosphates became labelled. The specific radioactivities of alanine, aspartate and glutamate were identical; the hexosamine had a specific radioactivity twice as high as e.g. alanine.The finding that pyruvate was not incorporated into compounds derived from acetyl CoA, whereas acetate was incorporated into derivatives of acetyl CoA and pyruvate in a 1:1 ratio demonstrates that pyruvate is synthesized by reductive carboxylation of acetyl CoA. The data further provide evidence that in this autotrophic CO2 fixation pathway hexosephosphates and pentosephosphates are synthesized from CO2 via acetyl CoA and pyruvate.  相似文献   

17.
Although carbon dioxide (CO2) is known to inhibit growth of most bacteria, very little is known about the cellular response. The food-borne pathogen Listeria monocytogenes is characterized by its ability to grow in high CO2 concentrations at refrigeration temperatures. We examined the listerial responses of different strains to growth in air, 100% N2, and 100% CO2. The CO2-induced changes in membrane lipid fatty acid composition and expression of selected genes were strain dependent. The acid-tolerant L. monocytogenes LO28 responded in the same manner to CO2 as to other anaerobic, slightly acidic environments (100% N2, pH 5.7). An increase in the expression of the genes encoding glutamate decarboxylase (essential for survival in strong acid) as well as an increased amount of branched-chain fatty acids in the membrane was observed in both atmospheres. In contrast, the acid-sensitive L. monocytogenes strain EGD responded differently to CO2 and N2 at the same pH. In a separate experiment with L. monocytogenes 412, an increased isocitrate dehydrogenase activity level was observed for cells grown in CO2-containing atmospheres. Together, our findings demonstrate that the CO2-response is a partly strain-dependent complex mechanism. The possible links between the CO2-dependent changes in isocitrate dehydrogenase activity, glutamate metabolism and branched fatty acid biosynthesis are discussed.  相似文献   

18.
Cultures of Acetobacterium woodii and Clostridium thermoaceticum growing on fructose or glucose, respectively, were found to produce small, but significant amounts of carbon monoxide. In the gas phase of the cultures up to 53 ppm CO were determined. The carbon monoxide production was completely inhibited by 1 mM cyanide. Cultures and cell suspensions of both acetogens incorporated 14CO specifically into the carboxyl group of acetate. This CO fixation into C1 of acetate was unaffected by cyanide (1 mM). The findings are taken to indicate that CO (in a bound form) is the physiological precursor of the C1 of acetate in acetate synthesis from CO2. The cyanide inhibition experiments support the hypothesis that the cyanide-sensitive carbon monoxide dehydrogenase may serve to reduce CO2 to CO rather than to incorporate the carbonyl into C1 of acetate.  相似文献   

19.
Summary Mutants of Saccharomyces cerevisiae without detectable phosphofructokinase activity were isolated. They were partly recessive and belonged to two genes called PFK1 and PFK2. Mutants with a defect in only one of the two genes could not grow when they were transferred from a medium with a nonfermentable carbon source to a medium with glucose and antimycin A, an inhibitor of respiration. However, the same mutants could grow when antimycin A was added to such mutants after they had been adapted to the utilization of glucose. Double mutants with defects in both genes could not grow at all on glucose as the sole carbon source. Mutants with a single defect in gene PFK1 or PFK2 could form ethanol on a glucose medium. However, in contrast to wild-type cells, there was a lag period of about 2 h before ethanol could be formed after transfer from a medium with only nonfermentable carbon sources to a glucose medium. Wild-type cells under the same conditions started to produce ethanol immediately. Mutants with defects in both PFK genes could not form ethanol at all. Mutants without phosphoglucose isomerase or triosephosphate isomerase did not form ethanol either. Double mutants without phosphofructokinase and phosphoglucose isomerase accumulated large amounts of glucose-6-phosphate on a glucose medium. This suggested that the direct oxidation of glucose-6-phosphate could not provide a bypass around the phosphofructokinase reaction. On the other hand, the triosephosphate isomerase reaction was required for ethanol production. Experiments with uniformly labeled glucose and glucose labeled in positions 3 and 4 were used to determine the contribution of the different carbon atoms of glucose to the fermentative production of CO2. With only fermentation operating, only carbon atoms 3 and 4 should contribute to CO2 production. However, wild-type cells produced significant amounts of radioactivity from other carbon atoms and pfk mutants generated CO2 almost equally well from all six carbon atoms of glucose. This suggested that phosphofructokinase is a dispensable enzyme in yeast glycolysis catalyzing only part of the glycolytic flux.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号