首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Introgressive hybridization can pose a serious threat to endangered species which have an overlapping distribution such as in the case of two polecat species, Mustela eversmanii and M. putorius, in Europe. The population size of steppe polecat is known to continuously shrink, whereas its sister species, the European polecat, is still somehow widespread. In this study, we perform an analysis using microsatellite (SSR) and genomic (SNP) data sets to identify natural hybrids between polecats. Four populations were genotyped for eight polymorphic SSR loci, and thousands of unlinked SNPs were generated using a reduced-representation sequencing approach, RADseq, to characterize the genetic make-up of allopatric populations and to identify hybrids in the sympatric area. We applied standard population genetic analyses to characterize the populations based on their SSR allelic frequency. Only a single sample out of 48 sympatric samples showed exact intermediacy that we identified as an F1 hybrid. Additionally, one specimen was indicated in the genomic data sets as backcrossed. Other backcrosses, indicated by SSRs, were not validated by SNPs, which highlights the higher efficacy of the genomic method to identify backcrossed individuals. The low frequency of hybridization suggests that the difference in habitat preference of the two species may act as a barrier to admixture. Therefore, it is apparently unlikely that polecat populations are threatened by significant introgression. The two species showed a clear genetic differentiation using both techniques. We found higher genetic diversity values in the sympatric steppe polecat population than in the other studies on polecat populations. Although M. putorius is a hunted species in most countries, genetic diversity values indicate worse conditions in Europe than in the protected sibling species M. eversmanii. Suspending hunting and providing protected status of the former seems to be reasonable and timely.  相似文献   

2.
    
One of the most celebrated examples of sympatric speciation in nature are monophyletic radiations of cichlid fishes endemic to Cameroon crater lakes. However, phylogenetic inference of monophyly may not detect complex colonization histories involving some allopatric isolation, such as double invasions obscured by genome‐wide gene flow. Population genomic approaches are better suited to test hypotheses of sympatric speciation in these cases. Here, we use comprehensive sampling from all four sympatric crater lake cichlid radiations in Cameroon and outgroups across Africa combined with next‐generation sequencing to genotype tens of thousands of SNPs. We find considerable evidence of gene flow between all four radiations and neighboring riverine populations after initial colonization. In a few cases, some sympatric species are more closely related to outgroups than others, consistent with secondary gene flow facilitating their speciation. Our results do not rule out sympatric speciation in Cameroon cichlids, but rather reveal a complex history of speciation with gene flow, including allopatric and sympatric phases, resulting in both reproductively isolated species and incipient species complexes. The best remaining non‐cichlid examples of sympatric speciation all involve assortative mating within microhabitats. We speculate that this feature may be necessary to complete the process of sympatric speciation in nature.  相似文献   

3.
Genes of the major histocompatibility complex (MHC) are considered a paradigm of adaptive evolution at the molecular level and as such are frequently investigated by evolutionary biologists and ecologists. Accurate genotyping is essential for understanding of the role that MHC variation plays in natural populations, but may be extremely challenging. Here, I discuss the DNA-based methods currently used for genotyping MHC in non-model vertebrates, as well as techniques likely to find widespread use in the future. I also highlight the aspects of MHC structure that are relevant for genotyping, and detail the challenges posed by the complex genomic organization and high sequence variation of MHC loci. Special emphasis is placed on designing appropriate PCR primers, accounting for artefacts and the problem of genotyping alleles from multiple, co-amplifying loci, a strategy which is frequently necessary due to the structure of the MHC. The suitability of typing techniques is compared in various research situations, strategies for efficient genotyping are discussed and areas of likely progress in future are identified. This review addresses the well established typing methods such as the Single Strand Conformation Polymorphism (SSCP), Denaturing Gradient Gel Electrophoresis (DGGE), Reference Strand Conformational Analysis (RSCA) and cloning of PCR products. In addition, it includes the intriguing possibility of direct amplicon sequencing followed by the computational inference of alleles and also next generation sequencing (NGS) technologies; the latter technique may, in the future, find widespread use in typing complex multilocus MHC systems.  相似文献   

4.
5.
6.
    
Migration is a ubiquitous life history trait with profound evolutionary and ecological consequences. Recent developments in telemetry and genomics, when combined, can bring significant insights on the migratory ecology of nonmodel organisms in the wild. Here, we used this integrative approach to document dispersal, gene flow and potential for local adaptation in anadromous Arctic Char from six rivers in the Canadian Arctic. Acoustic telemetry data from 124 tracked individuals indicated asymmetric dispersal, with a large proportion of fish (72%) tagged in three different rivers migrating up the same short river in the fall. Population genomics data from 6,136 SNP markers revealed weak, albeit significant, population differentiation (average pairwise FST = 0.011) and asymmetric dispersal was also revealed by population assignments. Approximate Bayesian computation simulations suggested the presence of asymmetric gene flow, although in the opposite direction to that observed from the telemetry data, suggesting that dispersal does not necessarily lead to gene flow. These observations suggested that Arctic Char home to their natal river to spawn, but may overwinter in rivers with the shortest migratory route to minimize the costs of migration in nonbreeding years. Genome scans and genetic–environment associations identified 90 outlier markers putatively under selection, 23 of which were in or near a gene. Of these, at least four were involved in muscle and cardiac function, consistent with the hypothesis that migratory harshness could drive local adaptation. Our study illustrates the power of integrating genomics and telemetry to study migrations in nonmodel organisms in logistically challenging environments such as the Arctic.  相似文献   

7.
    
Despite the increasing opportunity to collect large‐scale data sets for population genomic analyses, the use of high‐throughput sequencing to study populations of polyploids has seen little application. This is due in large part to problems associated with determining allele copy number in the genotypes of polyploid individuals (allelic dosage uncertainty–ADU), which complicates the calculation of important quantities such as allele frequencies. Here, we describe a statistical model to estimate biallelic SNP frequencies in a population of autopolyploids using high‐throughput sequencing data in the form of read counts. We bridge the gap from data collection (using restriction enzyme based techniques [e.g. GBS, RADseq]) to allele frequency estimation in a unified inferential framework using a hierarchical Bayesian model to sum over genotype uncertainty. Simulated data sets were generated under various conditions for tetraploid, hexaploid and octoploid populations to evaluate the model's performance and to help guide the collection of empirical data. We also provide an implementation of our model in the R package polyfreqs and demonstrate its use with two example analyses that investigate (i) levels of expected and observed heterozygosity and (ii) model adequacy. Our simulations show that the number of individuals sampled from a population has a greater impact on estimation error than sequencing coverage. The example analyses also show that our model and software can be used to make inferences beyond the estimation of allele frequencies for autopolyploids by providing assessments of model adequacy and estimates of heterozygosity.  相似文献   

8.
    
Restriction site‐associated DNA sequencing (RADseq) is a powerful tool for genotyping of individuals, but the identification of loci and assignment of sequence reads is a crucial and often challenging step. The optimal parameter settings for a given de novo RADseq assembly vary between data sets and can be difficult and computationally expensive to determine. Here, we introduce RADProc, a software package that uses a graph data structure to represent all sequence reads and their similarity relationships. Storing sequence–comparison results in a graph eliminates unnecessary and redundant sequence similarity calculations. De novo locus formation for a given parameter set can be performed on the precomputed graph, making parameter sweeps far more efficient. RADProc also uses a clustering approach for faster nucleotide‐distance calculation. The performance of RADProc compares favourably with that of the widely used Stacks software. The run‐time comparisons between RADProc and Stacks for 32 different parameter settings using 20 green‐crab (Carcinus maenas) samples showed that RADProc took as little as 2 hr 40 min compared to 78 hr by Stacks, while 16 brown trout (Salmo trutta L.) samples were processed by RADProc and Stacks in 23 and 263 hr, respectively. Comparisons of the de novo loci formed, and catalog built using both the methods demonstrate that the improvement in processing speeds achieved by RADProc does not affect much the actual loci formed and the results of downstream analyses based on those loci.  相似文献   

9.
10.
    
Adaptive radiation is recognized by a rapid burst of phenotypic, ecological and species diversification. However, it is unknown whether different species within an adaptive radiation evolve reproductive isolation at different rates. We compared patterns of genetic differentiation between nascent species within an adaptive radiation of Cyprinodon pupfishes using genotyping by sequencing. Similar to classic adaptive radiations, this clade exhibits rapid morphological diversification rates and two species are novel trophic specialists, a scale‐eater and hard‐shelled prey specialist (durophage), yet the radiation is <10 000 years old. Both specialists and an abundant generalist species all coexist in the benthic zone of lakes on San Salvador Island, Bahamas. Based on 13 912 single‐nucleotide polymorphisms (SNPs), we found consistent differences in genetic differentiation between each specialist species and the generalist across seven lakes. The scale‐eater showed the greatest genetic differentiation and clustered by species across lakes, whereas durophage populations often clustered with sympatric generalist populations, consistent with parallel speciation across lakes. However, we found strong evidence of admixture between durophage populations in different lakes, supporting a single origin of this species and genome‐wide introgression with sympatric generalist populations. We conclude that the scale‐eater is further along the speciation‐with‐gene‐flow continuum than the durophage and suggest that different adaptive landscapes underlying these two niche environments drive variable progress towards speciation within the same habitat. Our previous measurements of fitness surfaces in these lakes support this conclusion: the scale‐eating fitness peak may be more distant than the durophage peak on the complex adaptive landscape driving adaptive radiation.  相似文献   

11.
    
Restriction site‐associated DNA (RAD) sequencing was used to characterize neutral and adaptive genetic variation among geographic samples of red drum, Sciaenops ocellatus, an estuarine‐dependent fish found in coastal waters along the southeastern coast of the United States (Atlantic) and the northern Gulf of Mexico (Gulf). Analyses of neutral and outlier loci revealed three genetically distinct regional clusters: one in the Atlantic and two in the northern Gulf. Divergence in neutral loci indicated gradual genetic change and followed a linear pattern of isolation by distance. Divergence in outlier loci was at least an order of magnitude greater than divergence in neutral loci, and divergence between the regions in the Gulf was twice that of divergence between other regions. Discordance in patterns of genetic divergence between outlier and neutral loci is consistent with the hypothesis that the former reflects adaptive responses to environmental factors that vary on regional scales, while the latter largely reflects drift processes. Differences in basic habitat, initiated by glacial retreat and perpetuated by contemporary oceanic and atmospheric forces interacting with the geomorphology of the northern Gulf, followed by selection, appear to have led to reduced gene flow among red drum across the northern Gulf, reinforcing differences accrued during isolation and resulting in continued divergence across the genome. This same dynamic also may pertain to other coastal or nearshore fishes (18 species in 14 families) where genetically or morphologically defined sister taxa occur in the three regions.  相似文献   

12.
    
Previous studies show that the indigenous people of the southern Cape of South Africa were dramatically impacted by the arrival of European colonists starting ~400 years ago and their descendants are today mixed with Europeans and Asians. To gain insight on the occupants of the Vaalkrans Shelter located at the southernmost tip of Africa, we investigated the genetic make-up of an individual who lived there about 200 years ago. We further contextualize the genetic ancestry of this individual among prehistoric and current groups. From a hair sample excavated at the shelter, which was indirectly dated to about 200 years old, we sequenced the genome (1.01 times coverage) of a Later Stone Age individual. We analyzed the Vaalkrans genome together with genetic data from 10 ancient (pre-colonial) individuals from southern Africa spanning the last 2000 years. We show that the individual from Vaalkrans was a man who traced ~80% of his ancestry to local southern San hunter–gatherers and ~20% to a mixed East African-Eurasian source. This genetic make-up is similar to modern-day Khoekhoe individuals from the Northern Cape Province (South Africa) and Namibia, but in the southern Cape, the Vaalkrans man's descendants have likely been assimilated into mixed-ancestry “Coloured” groups. The Vaalkrans man's genome reveals that Khoekhoe pastoralist groups/individuals lived in the southern Cape as late as 200 years ago, without mixing with non-African colonists or Bantu-speaking farmers. Our findings are also consistent with the model of a Holocene pastoralist migration, originating in Eastern Africa, shaping the genomic landscape of historic and current southern African populations.  相似文献   

13.
    
Full genome sequencing of organisms with large and complex genomes is intractable and cost ineffective under most research budgets. Cycads (Cycadales) represent one of the oldest lineages of the extant seed plants and, partly due to their age, have incredibly large genomes up to ~60 Gbp. Restriction site‐associated DNA sequencing (RADseq) offers an approach to find genome‐wide informative markers and has proven to be effective with both model and nonmodel organisms. We tested the application of RADseq using ezRAD across all 10 genera of the Cycadales including an example data set of Cycas calcicola representing 72 samples from natural populations. Using previously available plastid and mitochondrial genomes as references, reads were mapped recovering plastid and mitochondrial genome regions and nuclear markers for all of the genera. De novo assembly generated up to 138,407 high‐depth clusters and up to 1,705 phylogenetically informative loci for the genera, and 4,421 loci for the example assembly of C. calcicola. The number of loci recovered by de novo assembly was lower than previous RADseq studies, yet still sufficient for downstream analysis. However, the number of markers could be increased by relaxing our assembly parameters, especially for the C. calcicola data set. Our results demonstrate the successful application of RADseq across the Cycadales to generate a large number of markers for all genomic compartments, despite the large number of plastids present in a typical plant cell. Our modified protocol was adapted to be applied to cycads and other organisms with large genomes to yield many informative genome‐wide markers.  相似文献   

14.
15.
    
All animals have evolved solutions to manage their genomes, enabling the efficient organization of meters of DNA strands in the nucleus and allowing for nuanced regulation of gene expression while keeping transposable elements suppressed. Epigenetic modifications are central to accomplishing all these. Recent advances in sequencing technologies and the development of techniques that profile epigenetic marks and chromatin accessibility using reagents that can be used in any species has catapulted epigenomic studies in diverse animal species, shedding light on the multitude of epigenomic mechanisms utilized across the evolutionary tree. Now, comparative epigenomics is a rapidly growing field that is uncovering mechanistic aspects of epigenetic modifications and chromatin organization in non-model invertebrates, ranging from octopus to sponges. This review puts recent discoveries in the epigenetics of non-model invertebrates in historical context, and describes new insight into the patterning and functions of DNA methylation and other highly conserved epigenetic modifications.  相似文献   

16.
    
Landscape genomics is a rapidly growing field with recent advances in both genotyping efficiency and statistical analyses that provide insight towards local adaptation of populations under varying environmental and selective pressure. Chinook salmon (Oncorhynchus tshawytscha) are a broadly distributed Pacific salmon species, occupying a diversity of habitats throughout the northeastern Pacific with pronounced variation in environmental and climate features but little is understood regarding local adaptation in this species. We used a multivariate method, redundancy analysis (RDA), to identify polygenic correlations between 19 703 SNP loci and a suite of environmental variables in 46 collections of Chinook salmon (1956 total individuals) distributed throughout much of its North American range. Models in RDA were conducted on both rangewide and regional scales by hierarchical partitioning of the populations into three distinct genetic lineages. Our results indicate that between 5.8 and 21.8% of genomic variation can be accounted for by environmental features, and 566 putatively adaptive loci were identified as targets of environmental adaptation. The most influential drivers of adaptive divergence included precipitation in the driest quarter of the year (Rangewide and North Coastal Lineage, anova = 0.002 and 0.01, respectively), precipitation in the wettest quarter of the year (Interior Columbia River Stream‐Type Lineage, anova = 0.03), variation in mean diurnal range in temperature (South Coastal Lineage, anova = 0.005), and migration distance (Rangewide, anova = 0.001). Our results indicate that environmental features are strong drivers of adaptive genomic divergence in this species, and provide a foundation to investigate how Chinook salmon might respond to global environmental change.  相似文献   

17.
18.
    
Laboratory techniques for high‐throughput sequencing have enhanced our ability to generate DNA sequence data from millions of natural history specimens collected prior to the molecular era, but remain poorly tested at shallower evolutionary time scales. Hybridization capture using restriction site‐associated DNA probes (hyRAD) is a recently developed method for population genomics with museum specimens. The hyRAD method employs fragments produced in a restriction site‐associated double digestion as the basis for probes that capture orthologous loci in samples of interest. While promising in that it does not require a reference genome, hyRAD has yet to be applied across study systems in independent laboratories. Here, we provide an independent assessment of the effectiveness of hyRAD on both fresh avian tissue and dried tissue from museum specimens up to 140 years old and investigate how variable quantities of input DNA affect sequencing, assembly, and population genetic inference. We present a modified bench protocol and bioinformatics pipeline, including three steps for detection and removal of microbial and mitochondrial DNA contaminants. We confirm that hyRAD is an effective tool for sampling thousands of orthologous SNPs from historic museum specimens to describe phylogeographic patterns. We find that modern DNA performs significantly better than historical DNA better during sequencing but that assembly performance is largely equivalent. We also find that the quantity of input DNA predicts %GC content of assembled contiguous sequences, suggesting PCR bias. We caution against sampling schemes that include taxonomic or geographic autocorrelation across modern and historic samples.  相似文献   

19.
    
Effective population size estimates are critical information needed for evolutionary predictions and conservation decisions. This is particularly true for species with social factors that restrict access to breeding or experience repeated fluctuations in population size across generations. We investigated the genomic estimates of effective population size along with diversity, subdivision, and inbreeding from 162,109 minimally filtered and 81,595 statistically neutral and unlinked SNPs genotyped in 437 grey wolf samples from North America collected between 1986 and 2021. We found genetic structure across North America, represented by three distinct demographic histories of western, central, and eastern regions of the continent. Further, grey wolves in the northern Rocky Mountains have lower genomic diversity than wolves of the western Great Lakes and have declined over time. Effective population size estimates revealed the historical signatures of continental efforts of predator extermination, despite a quarter century of recovery efforts. We are the first to provide molecular estimates of effective population size across distinct grey wolf populations in North America, which ranged between Ne ~ 275 and 3050 since early 1980s. We provide data that inform managers regarding the status and importance of effective population size estimates for grey wolf conservation, which are on average 5.2–9.3% of census estimates for this species. We show that while grey wolves fall above minimum effective population sizes needed to avoid extinction due to inbreeding depression in the short term, they are below sizes predicted to be necessary to avoid long-term risk of extinction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号