首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heat acclimation (HA) is the best strategy to improve heat stress tolerance by inducing positive physiological adaptations. Evidence indicates that the gut microbiome plays a fundamental role in the development of HA, and modulation of gut microbiota can improve tolerance to heat exposure and decrease the risks of heat illness. In this study, for the first time, we applied 16S rRNA gene sequencing and untargeted liquid chromatography–mass spectrometry (LC-MS) metabolomics to explore variations in the gut microbiome and faecal metabolic profiles in rats after HA. The gut microbiota of HA subjects exhibited higher diversity and richer microbes. HA altered the gut microbiota composition with significant increases in the genera Lactobacillus (a major probiotic) and Oscillospira alongside significant decreases in the genera Blautia and Allobaculum. The faecal metabolome was also significantly changed after HA, and among the 13 perturbed metabolites, (S)-AL 8810 and celastrol were increased. Moreover, the two increased genera were positively correlated with the two upregulated metabolites and negatively correlated with the other 11 downregulated metabolites, while the correlations between the two decreased genera and the upregulated/downregulated metabolites were completely contrary. In summary, both the structure of the gut microbiome community and the faecal metabolome were improved after 28 days of HA. These findings provide novel insights regarding the improvement of the gut microbiome and its functions as a potential mechanism by which HA confers protection against heat stress.  相似文献   

2.
Pan  Zhiyuan  Hu  Yichen  Huang  Zongyu  Han  Ni  Li  Yan  Zhuang  Xiaomei  Yin  Jiye  Peng  Hui  Gao  Quansheng  Zhang  Wenpeng  Huang  Yong  Cui  Yujun  Bi  Yujing  Xu  Zhenjiang Zech  Yang  Ruifu 《中国科学:生命科学英文版》2022,65(10):2093-2113

The gut microbiota is involved in host responses to high altitude. However, the dynamics of intestinal microecology and their association with altitude-related illness are poorly understood. Here, we used a rat model of hypobaric hypoxia challenge to mimic plateau exposure and monitored the gut microbiome, short-chain fatty acids (SCFAs), and bile acids (BAs) over 28 d. We identified weight loss, polycythemia, and pathological cardiac hypertrophy in hypoxic rats, accompanied by a large compositional shift in the gut microbiota, which is mainly driven by the bacterial families of Prevotellaceae, Porphyromonadaceae, and Streptococcaceae. The aberrant gut microbiota was characterized by increased abundance of the Parabacteroides, Alistipes, and Lactococcus genera and a larger Bacteroides to Prevotella ratio. Trans-omics analyses showed that the gut microbiome was significantly correlated with the metabolic abnormalities of SCFAs and BAs in feces, suggesting an interaction network remodeling of the microbiome-metabolome after the hypobaric hypoxia challenge. Interestingly, the transplantation of fecal microbiota significantly increased the diversity of the gut microbiota, partially inhibited the increased abundance of the Bacteroides and Alistipes genera, restored the decrease of plasma propionate, and moderately ameliorated cardiac hypertrophy in hypoxic rats. Our results provide an insight into the longitudinal changes in intestinal microecology during the hypobaric hypoxia challenge. Abnormalities in the gut microbiota and microbial metabolites contribute to the development of high-altitude heart disease in rats.

  相似文献   

3.
PurposeTo investigated the changes of gut microbiome and fecal metabolome during anti-tuberculosis chemotherapy with isoniazid (H)-rifampin (R)-pyrazinamide (Z)-ethambutol (E).Patients and methods(1) In this study, we recruited 168 stool specimens from 49 healthy volunteers without M. tuberculosis (Mtb), 30 healthy volunteers with latently infected by Mtb, 41 patients with active tuberculosis (ATB), 28 patients with 2-month HRZE treatment and 20 patients with 2-month HRZE followed by 4-month HR treatment. (2) We used 16S rRNA sequencing and an untargeted Liquid Chromatograph Mass Spectrometer-based metabolomics to investigate the changes of gut microbiome and the alteration of fecal metabolome, respectively, during anti-TB chemotherapy.ResultsMtb infection can reduce the diversity of intestinal flora of ATB patients and change their taxonomic composition, while the diversity of intestinal flora of ATB patients were restored during anti-TB chemotherapy. Especially, family Veillonellacea and Bateroidaceae and their genera Veillonella and Bacteroides significantly increased in the gut microbiota during anti-TB chemotherapy. Additionally, Mtb infection dynamically regulates fecal metabolism in ATB patients during anti-TB chemotherapy. Interestingly, the altered abundance of fecal metabolites correlated with the altered gut microbiota, especially the change of gut Clostridium, Bacteroides and Prevotella was closely related to the change of fecal metabolites such as Trans-4-Hydroxy-L-proline and Genistein caused by Mtb infection or anti-TB chemotherapy.ConclusionAnti-TB chemotherapy with HRZE can disrupt both gut microbiotas and metabolome in ATB patients. Some specific genera and metabolites are depleted or enriched during anti-TB chemotherapy. Therefore, revealing potential relevance between gut microbiota and anti-TB chemotherapy will provide potential biomarkers for evaluating the therapeutic efficacy in ATB patients.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12088-022-01003-2.  相似文献   

4.
Kashin-Beck disease (KBD) is a severe osteochondral disorder that may be driven by the interaction between genetic and environmental factors. We aimed to improve our understanding of the gut microbiota structure in KBD patients of different grades and the relationship between the gut microbiota and serum metabolites. Fecal and serum samples collected from KBD patients and normal controls (NCs) were used to characterize the gut microbiota using 16S rDNA gene and metabolomic sequencing via liquid chromatography-mass spectrometry (LC/MS). To identify whether gut microbial changes at the species level are associated with the genes or functions of the gut bacteria in the KBD patients, metagenomic sequencing of fecal samples from grade I KBD, grade II KBD and NC subjects was performed. The KBD group was characterized by elevated levels of Fusobacteria and Bacteroidetes. A total of 56 genera were identified to be significantly differentially abundant between the two groups. The genera Alloprevotella, Robinsoniella, Megamonas, and Escherichia_Shigella were more abundant in the KBD group. Consistent with the 16S rDNA analysis at the genus level, most of the differentially abundant species in KBD subjects belonged to the genus Prevotella according to metagenomic sequencing. Serum metabolomic analysis identified some differentially abundant metabolites among the grade I and II KBD and NC groups that were involved in lipid metabolism metabolic networks, such as that for unsaturated fatty acids and glycerophospholipids. Furthermore, we found that these differences in metabolite levels were associated with altered abundances of specific species. Our study provides a comprehensive landscape of the gut microbiota and metabolites in KBD patients and provides substantial evidence of a novel interplay between the gut microbiome and metabolome in KBD pathogenesis.Subject terms: Metagenomics, Metabolomics  相似文献   

5.
Clostridium difficile infection (CDI) is characterized by dysbiosis of the intestinal microbiota and a profound derangement in the fecal metabolome. However, the contribution of specific gut microbes to fecal metabolites in C. difficile-associated gut microbiome remains poorly understood. Using gas-chromatography mass spectrometry (GC-MS) and 16S rRNA deep sequencing, we analyzed the metabolome and microbiome of fecal samples obtained longitudinally from subjects with Clostridium difficile infection (n = 7) and healthy controls (n = 6). From 155 fecal metabolites, we identified two sterol metabolites at >95% match to cholesterol and coprostanol that significantly discriminated C. difficile-associated gut microbiome from healthy microbiota. By correlating the levels of cholesterol and coprostanol in fecal extracts with 2,395 bacterial operational taxonomic units (OTUs) determined by 16S rRNA sequencing, we identified 63 OTUs associated with high levels of coprostanol and 2 OTUs correlated with low coprostanol levels. Using indicator species analysis (ISA), 31 of the 63 coprostanol-associated bacteria correlated with health, and two Veillonella species were associated with low coprostanol levels that correlated strongly with CDI. These 65 bacterial taxa could be clustered into 12 sub-communities, with each community containing a consortium of organisms that co-occurred with one another. Our studies identified 63 human gut microbes associated with cholesterol-reducing activities. Given the importance of gut bacteria in reducing and eliminating cholesterol from the GI tract, these results support the recent finding that gut microbiome may play an important role in host lipid metabolism.  相似文献   

6.
Weaning weight is an important economic trait in the meat rabbit industry. Evidence has linked the gut microbiota to health and production performance in rabbits. However, the effect of gut microbiota on meat rabbit weaning weight remains unclear. In this study, we performed 16S rRNA gene sequencing analysis of 135 faecal samples from commercial Ira rabbits. We detected 50 OTUs significantly associated with weaning weight. OTUs that showed positive associations with weaning weight were mostly members of the family Ruminococcaceae which are important in degrading dietary fibres and producing butyrate. On the contrary, OTUs annotated to genera Blautia, Lachnoclostridium and Butyricicoccus correlated with fat deposition were negatively associated with weaning weight. Predicted functional capacity analysis revealed that 91 KOs and 26 KEGG pathways exhibited potential correlations with weaning weight. We found that gut microbiota involved in the metabolism of amino acids, butanoate, energy and monosaccharides affected weaning weight. Additionally, cross-validation analysis indicated that 16.16% of the variation in weaning weight was explained by the gut microbiome. Our findings provide important information to improve weaning weight of meat rabbits by modulating their gut microbiome.  相似文献   

7.
Spinal cord injury (SCI) is a disease involving gastrointestinal disorders. The underlying mechanisms of the potential protective effects of electroacupuncture (EA) and 5-hydroxytryptamine (5-HT) system on SCI remain unknown. We investigated whether EA improves gut microbial dysbiosis in SCI and regulates the 5-HT system. 16S rDNA gene sequencing was applied to investigate alterations in the gut microbiome of the rats. Faecal metabolites and the expression of the 5-HT system were detected. EA and faecal microbiota transplantation (FMT) treatment facilitated intestinal transmission functional recovery and restored the colon morphology of SCI rats. The composition of the intestinal microbiota, including numbers of phylum Proteobacteria, class Clostridia, order Bacteroidales, and genus Dorea, were amplified in SCI rats, and EA and FMT significantly reshaped the intestinal microbiota. SCI resulted in disturbed metabolic conditions in rats, and the EA and FMT group showed increased amounts of catechin compared with SCI rats. SCI inhibited 5-HT system expression in the colon, which was significantly reversed by EA and FMT treatment. Therefore, EA may ameliorate SCI by modulating microbiota and metabolites and regulate the 5-HT system. Our study provides new insights into the pathogenesis and therapy of SCI from the perspective of microbiota and 5-HT regulation.  相似文献   

8.
Human aging is invariably accompanied by a decline in renal function, a process potentially exacerbated by uremic toxins originating from gut microbes. Based on a registered household Chinese Guangxi longevity cohort (n = 151), we conducted comprehensive profiling of the gut microbiota and serum metabolome of individuals from 22 to 111 years of age and validated the findings in two independent East Asian aging cohorts (Japan aging cohort n = 330, Yunnan aging cohort n = 80), identifying unique age-dependent differences in the microbiota and serum metabolome. We discovered that the influence of the gut microbiota on serum metabolites intensifies with advancing age. Furthermore, mediation analyses unveiled putative causal relationships between the gut microbiota (Escherichia coli, Odoribacter splanchnicus, and Desulfovibrio piger) and serum metabolite markers related to impaired renal function (p-cresol, N-phenylacetylglutamine, 2-oxindole, and 4-aminohippuric acid) and aging. The fecal microbiota transplantation experiment demonstrated that the feces of elderly individuals could influence markers related to impaired renal function in the serum. Our findings reveal novel links between age-dependent alterations in the gut microbiota and serum metabolite markers of impaired renal function, providing novel insights into the effects of microbiota-metabolite interplay on renal function and healthy aging.  相似文献   

9.
The gut microbiota–host co-metabolites are good indicators for representing the cross-talk between host and gut microbiota in a bi-direct manner. There is increasing evidence that levels of aromatic amino acids (AAAs) are associated with the alteration of intestinal microbial community though the effects of long-term microbial disturbance remain unclear. Here we monitored the gut microbiota composition and host–microbiota co-metabolites AAA profiles of mice after gentamicin and ceftriaxone treatments for nearly 4 months since their weaning to reveal the relationship between host and microbiome in long- term microbial disturbances. The study was performed employing targeted LC-MS measurement of AAA-related metabolites and 16S RNA sequence of mice cecal contents. The results showed obvious decreased gut microbial diversity and decreased Firmicutes/Bacteroidetes ratio in the cecal contents after long-term antibiotics treatment. The accumulated AAA (tyrosine, phenylalanine and tryptophan) and re-distribution of their downstreaming metabolites that produced under the existence of intestinal flora were found in mice treated with antibiotics for 4 months. Our results suggested that the long-term antibiotic treatment significantly changed the composition of the gut microbiota and destroyed the homeostasis in the intestinal metabolism. And the urinary AAA could be an indicator for exploring interactions between host and gut microbiota.  相似文献   

10.
The development and progression of gastric cancer (GC) is greatly influenced by gastric microbiota and their metabolites. Here, we characterized the gastric microbiome and metabolome profiles of 37 GC tumor tissues and matched non-tumor tissues using 16s rRNA gene sequencing and ultrahigh performance liquid chromatography tandem mass spectrometry, respectively. Microbial diversity and richness were higher in GC tumor tissues than in non-tumor tissues. The abundance of Helicobacter was increased in non-tumor tissues, while the abundance of Lactobacillus, Streptococcus, Bacteroides, Prevotella, and 6 additional genera was increased in the tumor tissues. The untargeted metabolome analysis revealed 150 discriminative metabolites, among which the relative abundance of the amino acids, carbohydrates and carbohydrate conjugates, glycerophospholipids, and nucleosides was higher in tumor tissues compared to non-tumor tissues. The targeted metabolome analysis further demonstrated that the combination of 1-methylnicotinamide and N-acetyl-D-glucosamine-6-phosphate could serve as a robust biomarker for distinction between GC tumors and non-tumor tissues. Correlation analysis revealed that Helicobacter and Lactobacillus were negatively and positively correlated with the majority of differential metabolites in the classes of amino acids, carbohydrates, nucleosides, nucleotides, and glycerophospholipids, respectively, suggesting that Helicobacter and Lactobacillus might play a role in degradation and synthesis of the majority of differential metabolites in these classes, respectively. Acinetobacter, Comamonas, Faecalibacterium, Sphingomonas, and Streptococcus were also significantly correlated with many differential amino acids, carbohydrates, nucleosides, nucleotides, and glycerophospholipids. In conclusion, the differences in metabolome profiles between GC tumor and matched non-tumor tissues may be partly due to the collective activities of Helicobacter, Lactobacillus, and other bacteria, which eventually affects GC carcinogenesis and progression.Subject terms: Cancer metabolism, Gastrointestinal cancer  相似文献   

11.
12.
Gut microbiota plays important roles in host metabolism. Whether and how much the gut microbiota in different gut locations contributes to the variations of host serum metabolites are largely unknown, because it is difficult to obtain microbial samples from different gut locations on a large population scale. Here, we quantified the gut microbial compositions using 16S rRNA gene sequencing for 1070 samples collected from the ileum, cecum and faeces of 544 F6 pigs from a mosaic pig population. Untargeted metabolome measurements determined serum metabolome profiles. We found 1671, 12,985 and 103,250 significant correlations between circulating serum metabolites and bacterial ASVs in the ileum, cecum, and faeces samples. We detected nine serum metabolites showing significant correlations with gut bacteria in more than one gut location. However, most metabolite-microbiota pairwise associations were gut location-specific. Targeted metabolome analysis revealed that CDCA, taurine, L-leucine and N-acetyl-L-alanine can be used as biomarkers to predict porcine fatness. Enriched taxa in fat pigs, for example Prevotella and Lawsonia intracellularis were positively associated with L-leucine, while enriched taxa in lean pigs, such as Clostridium butyricum, were negatively associated with L-leucine and CDCA, but positively associated with taurine and N-acetyl-L-alanine. These results suggested that the contributions of gut microbiota in each gut location to the variations of serum metabolites showed spatial heterogeneity.  相似文献   

13.

Background

Intestinal bacteria are known to regulate bile acid (BA) homeostasis via intestinal biotransformation of BAs and stimulation of the expression of fibroblast growth factor 19 through intestinal nuclear farnesoid X receptor (FXR). On the other hand, BAs directly regulate the gut microbiota with their strong antimicrobial activities. It remains unclear, however, how mammalian BAs cross-talk with gut microbiome and shape microbial composition in a dynamic and interactive way.

Results

We quantitatively profiled small molecule metabolites derived from host-microbial co-metabolism in mice, demonstrating that BAs were the most significant factor correlated with microbial alterations among all types of endogenous metabolites. A high-fat diet (HFD) intervention resulted in a rapid and significant increase in the intestinal BA pool within 12 h, followed by an alteration in microbial composition at 24 h, providing supporting evidence that BAs are major dietary factors regulating gut microbiota. Feeding mice with BAs along with a normal diet induced an obese phenotype and obesity-associated gut microbial composition, similar to HFD-fed mice. Inhibition of hepatic BA biosynthesis under HFD conditions attenuated the HFD-induced gut microbiome alterations. Both inhibition of BAs and direct suppression of microbiota improved obese phenotypes.

Conclusions

Our study highlights a liver–BA–gut microbiome metabolic axis that drives significant modifications of BA and microbiota compositions capable of triggering metabolic disorders, suggesting new therapeutic strategies targeting BA metabolism for metabolic diseases.
  相似文献   

14.
The gut microbiota is considered a key factor in pathogenesis and progression of inflammatory bowel disease (IBD). The bacterium Pediococcus pentosaceus LI05 alleviated host inflammation by maintaining the gut epithelial integrity, modulating the host immunity, gut microbiota and metabolism, but its effect on IBD remains unclear. The present study aimed to investigate the role and mechanisms of P. pentosaceus LI05. Mice were administered P. pentosaceus LI05 or phosphate-buffered saline once daily by oral gavage for 14 days, and colitis was induced by providing mice 2% DSS-containing drinking water for 7 days. P. pentosaceus LI05 ameliorated colitis in mice and reduced the body weight loss, disease activity index (DAI) scores, colon length shortening, intestinal permeability and the proinflammatory cytokine levels. Furthermore, a significantly altered gut microbiota composition with increased diversity and short-chain fatty acid (SCFA) production was observed in mice treated with P. pentosaceus LI05. Several genera, including Akkermansia and Faecalibacterium, were differentially enriched in the P. pentosaceus LI05-treated mice and were negatively correlated with colitis indices and positively correlated with gut barrier markers and SCFA levels. The P. pentosaceus LI05 treatment alleviated intestinal inflammation by maintaining the intestinal epithelial integrity and modulating the immunological profiles, gut microbiome and metabolite composition. Based on our findings, P. pentosaceus LI05 might be applied as potential preparation to ameliorate colitis.  相似文献   

15.
Microorganisms that colonize the gastrointestinal tract, collectively known as the gut microbiota, are known to produce small molecules and metabolites that significantly contribute to host intestinal development, functions, and homeostasis. Emerging insights from microbiome research reveal that gut microbiota‐derived signals and molecules influence another key player maintaining intestinal homeostasis—the intestinal stem cell niche, which regulates epithelial self‐renewal. In this review, the literature on gut microbiota‐host crosstalk is surveyed, highlighting the effects of gut microbial metabolites on intestinal stem cells. The production of various classes of metabolites, their actions on intestinal stem cells are discussed and, finally, how the production and function of metabolites are modulated by aging and dietary intake is commented upon.  相似文献   

16.
High altitude is an important driving force in animal evolution. However, the effect of altitude on gut microbial communities in reptiles has not been examined in detail. Here, we investigated the intestinal microbiota of three populations of the lizard Phrynocephalus vlangalii living at different altitudes using 16S rRNA gene sequencing. Bacteroidetes, Firmicutes, and Proteobacteria were the most abundant phyla. Bacteroides, Odoribacter, and Parabacteroides were the most abundant genera. Significant differences in the intestinal microbiota composition were found among the three populations from different altitudes. The proportions of Verrucomicrobia and Akkermansia decreased, whereas Bacteroides increased significantly with altitude. Greater abundance of Bacteroides at higher altitude led to the fractional increase in the phylum Bacteroides relative to other phyla. Hypoxia may be the main factor that caused intestinal microbiota variation in P. vlangalii along the altitude gradient. Overall, our study suggested that the community composition and structure of intestinal microbiota of the lizard P. vlangalii varied along altitudes, and such differences likely play a certain role in highland adaptation. Our findings warrant a further study that would determine whether ambient and body temperatures play a key role in the modulation of intestinal microbiota in reptiles.  相似文献   

17.
Huangkui capsule (HKC), a traditional Chinese medicine, has been used for medication of kidney diseases, including diabetic nephropathy (DN). The current study aimed to evaluate the effects of HKC in the modulation of gut microbiota and the amelioration of metabolite levels by using non-obese diabetes (NOD) mice with DN. The microbiota from three parts of intestines (duodenum, ileum and colon) in NOD mice with and without HKC treatment were analysed using 16S rDNA sequencing techniques. Untargeted metabolomics in plasma of NOD mice were analysed with liquid mass spectrometry. Results showed that HKC administration ameliorated DN in NOD mice and the flora in duodenum were more sensitive to HKC intervention, while the flora in colon had more effects on metabolism. The bacterial genera such as Faecalitalea and Muribaculum significantly increased and negatively correlated with most of the altered metabolites after HKC treatment, while Phyllobacterium, Weissella and Akkermansia showed an opposite trend. The plasma metabolites, mainly including amino acids and fatty acids such as methionine sulfoxide, BCAAs and cis-7-Hexadecenoic acid, exhibited a distinct return to normal after HKC treatment. The current study thereby provides experimental evidence suggesting that HKC may modulate gut microbiota and subsequently ameliorate the metabolite levels in DN.  相似文献   

18.
Irritable bowel syndrome (IBS) is one of the functional gastrointestinal disorders characterized by chronic and/or recurrent symptoms of abdominal pain and irregular defecation. Changed gut microbiota has been proposed to mediate IBS; however, contradictory results exist, and IBS-specific microbiota, metabolites, and their interactions remain poorly understood. To address this issue, we performed metabolomic and metagenomic profiling of stool and serum samples based on discovery (n = 330) and validation (n = 101) cohorts. Fecal metagenomic data showed moderate dysbiosis compared with other diseases, in contrast, serum metabolites showed significant differences with greater power to distinguish IBS patients from healthy controls. Specifically, 726 differentially abundant serum metabolites were identified, including a cluster of fatty acyl-CoAs enriched in IBS. We further identified 522 robust associations between differentially abundant gut bacteria and fecal metabolites, of which three species including Odoribacter splanchnicus, Escherichia coli, and Ruminococcus gnavus were strongly associated with the low abundance of dihydropteroic acid. Moreover, dysregulated tryptophan/serotonin metabolism was found to be correlated with the severity of IBS depression in both fecal and serum metabolomes, characterized by a shift in tryptophan metabolism towards kynurenine production. Collectively, our study revealed serum/fecal metabolome alterations and their relationship with gut microbiome, highlighted the massive alterations of serum metabolites, which empower to recognize IBS patients, suggested potential roles of metabolic dysregulation in IBS pathogenesis, and offered new clues to understand IBS depression comorbidity. Our study provided a valuable resource for future studies, and would facilitate potential clinical applications of IBS featured microbiota and/or metabolites.Subject terms: Clinical microbiology, Colitis, Metagenomics  相似文献   

19.
方圆  李玭  武微  熊倩  律娜  朱宝利  张玉梅 《微生物学报》2021,61(11):3642-3652
[目的] 比较持续母乳喂养条件下不同分娩方式的34周龄婴儿肠道菌群差异,探讨分娩方式对较大婴儿肠道菌群发育的影响。[方法] 在北京地区招募健康足月分娩母乳喂养婴儿,在34周仍然参与随访的持续母乳喂养婴儿共21例,其中剖宫产婴儿16例、阴道分娩婴儿5例,进行肠道菌群的16S rRNA检测。[结果] 两组共21个粪便样本中,共注释到6个门,分别为:疣微菌门、变形菌门、梭杆菌门、厚壁菌门、放线菌门和拟杆菌门;两组共21个样本中共有57个OTU注释到属水平,其中,26个属水平OTU被注释到厚壁菌门,18个属水平OTU被注释到变形菌门,6个属水平OTU被注释到放线菌门,5个属水平OTU被注释到拟杆菌门,梭杆菌门、疣微菌门各有1个属水平OTU被注释。其中变形菌门在阴道分娩组(44.17%)肠道菌群中的含量高于剖宫产组(16.10%);而放线菌门在阴道分娩婴儿(0.00%)肠道菌群中的含量低于剖宫产婴儿(0.09%)。阴道分娩组与剖宫产组相比,共有7个菌属的丰度发生了显著降低(P<0.05),分别为副杆菌属、葡萄球菌属、嗜血杆菌属、乳杆菌属、肠球菌属、双歧杆菌属及一注释到科水平的毛螺旋菌科OTU。[结论] 分娩方式对持续母乳喂养的婴儿肠道菌群结构存在影响,且这种影响在出生后34周仍然存在。  相似文献   

20.
The leeches Whitmania pigra and Hirudo nipponia live in similar environments but have different feeding habits. At present, there are few studies of the foraging mechanism of leeches with different feeding habits. In this study, we first used maze tests to show that these two species of leeches could locate and distinguish their prey through chemosensory activity without mechanical stimulation. However, the two leech species have different foraging behaviors: Individuals of W. pigra move slowly and repeatedly adjust direction through probing and crawling to detect the location of prey (snails), whereas individuals of H. nipponia move quickly, and after determining the location of food (porcine blood), they quickly swim or crawl to the vicinity of their prey. Scanning electron microscopy (SEM) revealed that there are two types of sensory cilia and pore structures related to mucus secretion in the heads of both leeches. There are two differently sized types of chemoreceptors on the dorsal lip in W. pigra, which may have different functions during foraging, whereas in H. nipponia there is only one type of chemoreceptor, which is small. We detected the chemical components in the natural food of these two leech species by UHPLC–MS. There were 934 metabolites in the body fluid of snails and 751 metabolites in porcine serum; five metabolites unique to the body fluid of snails and to porcine serum were screened as candidate feeding attractants. Of these metabolites, betaine and arginine effectively attracted individuals of W. pigra and H. nipponia, respectively. In summary, leeches with different feeding habits use chemoreceptors to sense external chemical signals when foraging, and there are significant differences between species in foraging behavior, chemoreceptors, and attractants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号