共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Hao Yu Hongzhi Tang Xiongyu Zhu Yangyang Li Ping Xu 《Applied and environmental microbiology》2015,81(1):272-281
A newly isolated strain, SJY1, identified as Ochrobactrum sp., utilizes nicotine as a sole source of carbon, nitrogen, and energy. Strain SJY1 could efficiently degrade nicotine via a variant of the pyridine and pyrrolidine pathways (the VPP pathway), which highlights bacterial metabolic diversity in relation to nicotine degradation. A 97-kbp DNA fragment containing six nicotine degradation-related genes was obtained by gap closing from the genome sequence of strain SJY1. Three genes, designated vppB, vppD, and vppE, in the VPP pathway were cloned and heterologously expressed, and the related proteins were characterized. The vppB gene encodes a flavin-containing amine oxidase converting 6-hydroxynicotine to 6-hydroxy-N-methylmyosmine. Although VppB specifically catalyzes the dehydrogenation of 6-hydroxynicotine rather than nicotine, it shares higher amino acid sequence identity with nicotine oxidase (38%) from the pyrrolidine pathway than with its isoenzyme (6-hydroxy-l-nicotine oxidase, 24%) from the pyridine pathway. The vppD gene encodes an NADH-dependent flavin-containing monooxygenase, which catalyzes the hydroxylation of 6-hydroxy-3-succinoylpyridine to 2,5-dihydroxypyridine. VppD shows 62% amino acid sequence identity with the hydroxylase (HspB) from Pseudomonas putida strain S16, whereas the specific activity of VppD is ∼10-fold higher than that of HspB. VppE is responsible for the transformation of 2,5-dihydroxypyridine. Sequence alignment and phylogenetic analysis suggested that the VPP pathway, which evolved independently from nicotinic acid degradation, might have a closer relationship with the pyrrolidine pathway. The proteins and functional pathway identified here provide a sound basis for future studies aimed at a better understanding of molecular principles of nicotine degradation. 相似文献
3.
A bacterium (strain B1) utilizing hexadecyltrimethylammonium chloride as a carbon and energy source was isolated from activated sludge and tentatively identified as a Pseudomonas sp. This bacterium only grew on alkyltrimethylammonium salts (C12 to C22) and possible intermediates of hexadecyltrimethylammonium chloride breakdown such as hexadecanoate and acetate. Pseudomonas strain B1 did not grow on amines. Simultaneous adaptation studies suggested that the bacterium oxidized only the alkyl chain of hexadecyltrimethylammonium chloride. This was confirmed by the stoichiometric formation of trimethylamine from hexadecyltrimethylammonium chloride. The initial hexadecyltrimethylammonium chloride oxygenase activity, measured by its ability to form trimethylamine, was NAD(P)H and O2 dependent. Finally, assays of aldehyde dehydrogenase, hexadecanoyl-coenzyme A dehydrogenase, and isocitrate lyase in cell extracts revealed the potential of Pseudomonas strain B1 to metabolize the alkyl chain via beta-oxidation. 相似文献
4.
《Bioscience, biotechnology, and biochemistry》2013,77(9):1684-1687
Five microbial strains that removed hydrogen sulfide (H2S) or methylmercaptan (CH3SH) gas were newly isolated from soil samples. Strain DO-1, one of the isolates, was identified as a member of Pseudomonas sp., and it’s immobilized cells removed 1 or 10 ppm of H2S gas within 2 hours. When strain DO-1 was cultured aerobically in a flask containing nutrient broth medium, the deodorizing activity increased, depending on the growth of the culture, and the maximum activity was obtained after 48 hours. Even though the immobilized cells were stored at 4 or 25°C in sealed bottles for 6 months, the deodorizing activity remained. Throughout this study, strain DO-1 removed H2 S gas without preliminary feeding or exposure to sulfur com-pounds as growth substrates or inducers. These characteristics are advantageous for the deodorization of the malodorous gases surrounding us in daily life. 相似文献
5.
Metabolism of Dibenzofuran by Pseudomonas sp. Strain HH69 and the Mixed Culture HH27 总被引:7,自引:11,他引:7 下载免费PDF全文
Peter Fortnagel Hauke Harms Rolf-Michael Wittich Sabine Krohn Holger Meyer Volker Sinnwell Heinz Wilkes Wittko Francke 《Applied microbiology》1990,56(4):1148-1156
A Pseudomonas sp. strain, HH69, and a mixed culture, designated HH27, were isolated by selective enrichment from soil samples. The pure strain and the mixed culture grew aerobically on dibenzofuran as the sole source of carbon and energy. Degradation proceeded via salicylic acid which was branched into the gentisic acid and the catechol pathway. Both salicylic acid and gentisic acid accumulated in the culture medium of strain HH69. The acids were slowly metabolized after growth ceased. The enzymes responsible for their metabolism showed relatively low activities. Besides the above-mentioned acids, 2-hydroxyacetophenone, benzopyran-4-one (chromone), several 2-substituted chroman-4-ones, and traces of the four isomeric monohydroxydiben-zofurans were identified in the culture medium. 2,2′,3-Trihydroxybiphenyl was isolated from the medium of a dibenzofuran-converting mutant derived from parent strain HH69, which can no longer grow on dibenzofuran. This gives evidence for a novel type of dioxygenases responsible for the attack on the biarylether structure of the dibenzofuran molecule. A meta-fission mechanism for cleavage of the dihydroxylated aromatic nucleus of 2,2′,3-trihydroxybiphenyl is suggested as the next enzymatic step in the degradative pathway. 相似文献
6.
温度对假单胞rsmA突变株M-18R合成Plt和PCA的区别性影响 总被引:1,自引:0,他引:1
次生代谢物阻遏蛋白(Repressor of secondary metabolite,Rsm)A是一种全局性调控因子,与mRNA的RBS结合,转录后水平上抑制基因翻译。运用同源重组技术,构建了假单胞茵(Pseudomonas sp.)M-18的rsmA突变菌株M-18R。在37℃、28℃恒温和短期升温(37℃、4h培养,转28℃继续培养)条件下,比较野生株M-18和突变株M-18R生物合成藤黄绿菌素(Plt)和吩嗪-1-羧酸(PCA)的量。在37℃条件下,M-18和M-18R合成这两种抗生物质的能力几乎受到完全抑制。在28℃条件下,M-18R合成P11的量约为野生型M-18的10倍,达到270μg/mL,但是合成PCA的量仅为野生型的50%。经短期升温培养,M-18的Plt合成量明显下降,PCA产量降低不显;相反,M-18R合成Plt的量达到400μg/mL,但PCA产量的变化仍不明显。推测,M-18菌株细胞内存在着某种与RsmA相关联的温度敏感因子,在RsmA缺失条件下,作为专一性激活剂促进Plt的生物合成,但是,并不参与对PCA合成的调控。 相似文献
7.
A Cold-Adapted Lipase of an Alaskan Psychrotroph, Pseudomonas sp. Strain B11-1: Gene Cloning and Enzyme Purification and Characterization 总被引:7,自引:0,他引:7 下载免费PDF全文
Dong-Won Choo Tatsuo Kurihara Takeshi Suzuki Kenji Soda Nobuyoshi Esaki 《Applied microbiology》1998,64(2):486-491
A psychrotrophic bacterium producing a cold-adapted lipase upon growth at low temperatures was isolated from Alaskan soil and identified as a Pseudomonas strain. The lipase gene (lipP) was cloned from the strain and sequenced. The amino acid sequence deduced from the nucleotide sequence of the gene (924 bp) corresponded to a protein of 308 amino acid residues with a molecular weight of 33,714. LipP also has consensus motifs conserved in other cold-adapted lipases, i.e., Lipase 2 from Antarctic Moraxella TA144 (G. Feller, M. Thiry, J. L. Arpigny, and C. Gerday, DNA Cell Biol. 10:381–388, 1991) and the mammalian hormone-sensitive lipase (D. Langin, H. Laurell, L. S. Holst, P. Belfrage, and C. Holm, Proc. Natl. Acad. Sci. USA 90:4897–4901, 1993): a pentapeptide, GDSAG, containing the putative active-site serine and an HG dipeptide. LipP was purified from an extract of recombinant Escherichia coli C600 cells harboring a plasmid coding for the lipP gene. The enzyme showed a 1,3-positional specificity toward triolein. p-Nitrophenyl esters of fatty acids with short to medium chains (C4 and C6) served as good substrates. The enzyme was stable between pH 6 and 9, and the optimal pH for the enzymatic hydrolysis of tributyrin was around 8. The activation energies for the hydrolysis of p-nitrophenyl butyrate and p-nitrophenyl laurate were determined to be 11.2 and 7.7 kcal/mol, respectively, in the temperature range 5 to 35°C. The enzyme was unstable at temperatures higher than 45°C. The Km of the enzyme for p-nitrophenyl butyrate increased with increases in the assay temperature. The enzyme was strongly inhibited by Zn2+, Cu2+, Fe3+, and Hg2+ but was not affected by phenylmethylsulfonyl fluoride and bis-nitrophenyl phosphate. Various water-miscible organic solvents, such as methanol and dimethyl sulfoxide, at concentrations of 0 to 30% (vol/vol) activated the enzyme. 相似文献
8.
Metabolism of Naphthalene, 1-Naphthol, Indene, and Indole by Rhodococcus sp. Strain NCIMB 12038 总被引:2,自引:1,他引:2 下载免费PDF全文
The regulation of naphthalene and 1-naphthol metabolism in a Rhodococcus sp. (NCIMB 12038) has been investigated. The microorganism utilizes separate pathways for the degradation of these compounds, and they are regulated independently. Naphthalene metabolism was inducible, but not by salicylate, and 1-naphthol metabolism, although constitutive, was also repressed during growth on salicylate. The biochemistry of naphthalene degradation in this strain was otherwise identical to that found in Pseudomonas putida, with salicylate as a central metabolite and naphthalene initially being oxidized via a naphthalene dioxygenase enzyme to cis-(1R,2S)-1,2-dihydroxy-1,2-dihydronaphthalene (naphthalene cis-diol). A dioxygenase enzyme was not expressed under growth conditions which facilitate 1-naphthol degradation. However, biotransformations with indene as a substrate suggested that a monooxygenase enzyme may be involved in the degradation of this compound. Indole was transformed to indigo by both naphthalene-grown NCIMB 12038 and by cells grown in the absence of an inducer. Therefore, the presence of a naphthalene dioxygenase enzyme activity was not necessary for this reaction. Thus, the biotransformation of indole to indigo may be facilitated by another type of enzyme (possibly a monooxygenase) in this organism. 相似文献
9.
10.
11.
12.
13.
Lactobacillus rhamnosus Strain GG Reduces Aflatoxin B1 Transport, Metabolism, and Toxicity in Caco-2 Cells 下载免费PDF全文
S. Gratz Q. K. Wu H. El-Nezami R. O. Juvonen H. Mykknen P. C. Turner 《Applied microbiology》2007,73(12):3958-3964
The probiotic Lactobacillus rhamnosus GG is able to bind the potent hepatocarcinogen aflatoxin B1 (AFB1) and thus potentially restrict its rapid absorption from the intestine. In this study we investigated the potential of GG to reduce AFB1 availability in vitro in Caco-2 cells adapted to express cytochrome P-450 (CYP) 3A4, such that both transport and toxicity could be assessed. Caco-2 cells were grown as confluent monolayers on transmembrane filters for 21 days prior to all studies. AFB1 levels in culture medium were measured by high-performance liquid chromatography. In CYP 3A4-induced monolayers, AFB1 transport from the apical to the basolateral chamber was reduced from 11.1% ± 1.9% to 6.4% ± 2.5% (P = 0.019) and to 3.3% ± 1.8% (P = 0.002) within the first hour in monolayers coincubated with GG (1 × 1010 and 5 × 1010 CFU/ml, respectively). GG (1 × 1010 and 5 × 1010 CFU/ml) bound 40.1% ± 8.3% and 61.0% ± 6.0% of added AFB1 after 1 h, respectively. AFB1 caused significant reductions of 30.1% (P = 0.01), 49.4% (P = 0.004), and 64.4% (P < 0.001) in transepithelial resistance after 24, 48, and 72 h, respectively. Coincubation with 1 × 1010 CFU/ml GG after 24 h protected against AFB1-induced reductions in transepithelial resistance at both 24 h (P = 0.002) and 48 h (P = 0.04). DNA fragmentation was apparent in cells treated only with AFB1 cells but not in cells coincubated with either 1 × 1010 or 5 × 1010 CFU/ml GG. GG reduced AFB1 uptake and protected against both membrane and DNA damage in the Caco-2 model. These data are suggestive of a beneficial role of GG against dietary exposure to aflatoxin. 相似文献
14.
Inhibitory effects of 2-deoxy-D-glucose (2dG) on methanol metabolism in Torulopsis A–12 were investigated. The remarkable inhibition was observed on growth in the presence of 50 μg/ml of 2dG when methanol was used as a carbon source. At the earlier time of incubation with 2dG, the incorporation of 14C-methanol into hexose-phosphate by intact cells was inhibited by 2dG, and this led to the reduction of the intracellular concentration of hexose-phosphates. In the later period of incubation the specific activity of alcohol oxidase reduced, and formate accumulated extracellularly. 相似文献
15.
Chromosomal Integration, Tandem Amplification, and Deamplification in Pseudomonas putida F1 of a 105-Kilobase Genetic Element Containing the Chlorocatechol Degradative Genes from Pseudomonas sp. Strain B13 下载免费PDF全文
Roald Ravatn Sonja Studer Dirk Springael Alexander J. B. Zehnder Jan Roelof van der Meer 《Journal of bacteriology》1998,180(17):4360-4369
Analysis of chlorobenzene-degrading transconjugants of Pseudomonas putida F1 which had acquired the genes for chlorocatechol degradation (clc) from Pseudomonas sp. strain B13 revealed that the clc gene cluster was present on a 105-kb amplifiable genetic element (named the clc element). In one such transconjugant, P. putida RR22, a total of seven or eight chromosomal copies of the entire genetic element were present when the strain was cultivated on chlorobenzene. Chromosomal integrations of the 105-kb clc element occurred in two different loci, and the target sites were located within the 3′ end of glycine tRNA structural genes. Tandem amplification of the clc element was preferentially detected in one locus on the F1 chromosome. After prolonged growth on nonselective medium, transconjugant strain RR22 gradually diverged into subpopulations with lower copy numbers of the clc element. Two nonadjacent copies of the clc element in different loci always remained after deamplification, but strains with only two copies could no longer use chlorobenzene as a sole substrate. This result suggests that the presence of multiple copies of the clc gene cluster was a prerequisite for the growth of P. putida RR22 on chlorobenzene and that amplification of the element was positively selected for in the presence of chlorobenzene. 相似文献
16.
A Gene Cluster Encoding Steps in Conversion of Naphthalene to Gentisate in Pseudomonas sp. Strain U2 总被引:4,自引:0,他引:4 下载免费PDF全文
Sergio L. Fuenmayor Mark Wild Alastair L. Boyes Peter A. Williams 《Journal of bacteriology》1998,180(9):2522-2530
Pseudomonas sp. strain U2 was isolated from oil-contaminated soil in Venezuela by selective enrichment on naphthalene as the sole carbon source. The genes for naphthalene dioxygenase were cloned from the plasmid DNA of strain U2 on an 8.3-kb BamHI fragment. The genes for the naphthalene dioxygenase genes nagAa (for ferredoxin reductase), nagAb (for ferredoxin), and nagAc and nagAd (for the large and small subunits of dioxygenase, respectively) were located by Southern hybridizations and by nucleotide sequencing. The genes for nagB (for naphthalene cis-dihydrodiol dehydrogenase) and nagF (for salicylaldehyde dehydrogenase) were inferred from subclones by their biochemical activities. Between nagAa and nagAb were two open reading frames, homologs of which have also been identified in similar locations in two nitrotoluene-using strains (J. V. Parales, A. Kumar, R. E. Parales, and D. T. Gibson, Gene 181:57–61, 1996; W.-C. Suen, B. Haigler, and J. C. Spain, J. Bacteriol. 178:4926–4934, 1996) and a naphthalene-using strain (G. J. Zylstra, E. Kim, and A. K. Goyal, Genet. Eng. 19:257–269, 1997). Recombinant Escherichia coli strains with plasmids carrying this region were able to convert salicylate to gentisate, which was identified by a combination of gas chromatography-mass spectrometry and nuclear magnetic resonance. The first open reading frame, designated nagG, encodes a protein with characteristics of a Rieske-type iron-sulfur center homologous to the large subunits of dihydroxylating dioxygenases, and the second open reading frame, designated nagH, encodes a protein with limited homology to the small subunits of the same dioxygenases. Cloned together in E. coli, nagG, nagH, and nagAb, were able to convert salicylate (2-hydroxybenzoate) into gentisate (2,5-dihydroxybenzoate) and therefore encode a salicylate 5-hydroxylase activity. Single-gene knockouts of nagG, nagH, and nagAb demonstrated their functional roles in the formation of gentisate. It is proposed that NagG and NagH are structural subunits of salicylate 5-hydroxylase linked to an electron transport chain consisting of NagAb and NagAa, although E. coli appears to be able to partially substitute for the latter. This constitutes a novel mechanism for monohydroxylation of the aromatic ring. Salicylate hydroxylase and catechol 2,3-dioxygenase in strain U2 could not be detected either by enzyme assay or by Southern hybridization. However growth on both naphthalene and salicylate caused induction of gentisate 1,2-dioxygenase, confirming this route for salicylate catabolism in strain U2. Sequence comparisons suggest that the novel gene order nagAa-nagG-nagH-nagAb-nagAc-nagAd-nagB-nagF represents the archetype for naphthalene strains which use the gentisate pathway rather than the meta cleavage pathway of catechol. 相似文献
17.
Pseudomonas sp. strain PPD and Alcaligenes sp. strain PPH isolated from soil by enrichment culture technique utilize 2-, 3- and 4-hydroxybenzoates as the sole source of carbon and energy. The degradation pathways were elucidated by performing whole-cell O(2) uptake, enzyme activity and induction studies. Depending on the mixture of carbon source and the preculture condition, strain PPH was found to degrade 2-hydroxybenzoate either via the catechol or gentisate route and has both salicylate 1-hydroxylase and salicylate 5-hydroxylase. Strain PPD utilizes 2-hydroxybenzoate via gentisate. Both strains degrade 3- and 4-hydroxybenzoate via gentisate and protocatechuate, respectively. Enzymes were induced by respective hydroxybenzoate. Growth pattern, O(2) uptake and enzyme activity profiles on the mixture of three hydroxybenzoates as a carbon source suggest coutilization by both strains. When 3- or 4-hydroxybenzoate grown culture was used as an inoculum, strain PPH failed to utilize 2-hydroxybenzoate via catechol, indicating the modulation of the metabolic pathways, thus generating metabolic diversity. 相似文献
18.
2-chloro-4-nitroaniline (2-C-4-NA) is used as an intermediate in the manufacture of dyes, pharmaceuticals, corrosion inhibitor and also used in the synthesis of niclosamide, a molluscicide. It is marked as a black-listed substance due to its poor biodegradability. We report biodegradation of 2-C-4-NA and its pathway characterization by Rhodococcus sp. strain MB-P1 under aerobic conditions. The strain MB-P1 utilizes 2-C-4-NA as the sole carbon, nitrogen, and energy source. In the growth medium, the degradation of 2-C-4-NA occurs with the release of nitrite ions, chloride ions, and ammonia. During the resting cell studies, the 2-C-4-NA-induced cells of strain MB-P1 transformed 2-C-4-NA stoichiometrically to 4-amino-3-chlorophenol (4-A-3-CP), which subsequently gets transformed to 6-chlorohydroxyquinol (6-CHQ) metabolite. Enzyme assays by cell-free lysates prepared from 2-C-4-NA-induced MB-P1 cells, demonstrated that the first enzyme in the 2-C-4-NA degradation pathway is a flavin-dependent monooxygenase that catalyzes the stoichiometric removal of nitro group and production of 4-A-3-CP. Oxygen uptake studies on 4-A-3-CP and related anilines by 2-C-4-NA-induced MB-P1 cells demonstrated the involvement of aniline dioxygenase in the second step of 2-C-4-NA degradation. This is the first report showing 2-C-4-NA degradation and elucidation of corresponding metabolic pathway by an aerobic bacterium. 相似文献
19.
Jing Lu Chuling Guo Jing Li Hui Zhang Guining Lu Zhi Dang Renren Wu 《World journal of microbiology & biotechnology》2013,29(9):1685-1694
A fusant strain F14 with high biodegradation capability of phenanthrene was obtained by protoplast fusion between Sphingomonas sp. GY2B (GenBank DQ139343) and Pseudomonas sp. GP3A (GenBank EU233280). F14 was screened and identified from 39 random fusants by antibiotic tests, scanning electron microscope (SEM) and randomly amplified polymorphic DNA (RAPD). The result of SEM analysis demonstrated that the cell shape of fusant F14 different from parental strains. RAPD analysis of 5 primers generated a total of 70 bands. The genetic similarity indices between F14 and parental strains GY2B and GP3A were 27.9 and 34.6 %, respectively. F14 could rapidly degrade phenanthrene within 24 h, and the degradation efficiency was much better than GY2B and GP3A. GC–MS analysis of metabolites of phenanthrene degradation indicated F14 had a different degradation pathway from GY2B. Furthermore, the fusant strain F14 had a wider adaptation of temperatures (25–36 °C) and pH values (6.5–9.0) than GY2B. The present study indicated that fusant strain F14 could be an effective and environment-friendly bacterial strain for PAHs bioremediation. 相似文献
20.
Identification and Sequencing of β-Myrcene Catabolism Genes from Pseudomonas sp. Strain M1 下载免费PDF全文
Sandra Iurescia Andrea M. Marconi Daniela Tofani Augusto Gambacorta Annalisa Patern Chiara Devirgiliis Mariët J. van der Werf Elisabetta Zennaro 《Applied microbiology》1999,65(7):2871-2876
The M1 strain, able to grow on β-myrcene as the sole carbon and energy source, was isolated by an enrichment culture and identified as a Pseudomonas sp. One β-myrcene-negative mutant, called N22, obtained by transposon mutagenesis, accumulated (E)-2-methyl-6-methylen-2,7-octadien-1-ol (or myrcen-8-ol) as a unique β-myrcene biotransformation product. This compound was identified by gas chromatography-mass spectrometry. We cloned and sequenced the DNA regions flanking the transposon and used these fragments to identify the M1 genomic library clones containing the wild-type copy of the interrupted gene. One of the selected cosmids, containing a 22-kb genomic insert, was able to complement the N22 mutant for growth on β-myrcene. A 5,370-bp-long sequence spanning the region interrupted by the transposon in the mutant was determined. We identified four open reading frames, named myrA, myrB, myrC, and myrD, which can potentially code for an aldehyde dehydrogenase, an alcohol dehydrogenase, an acyl-coenzyme A (CoA) synthetase, and an enoyl-CoA hydratase, respectively. myrA, myrB, and myrC are likely organized in an operon, since they are separated by only 19 and 36 nucleotides (nt), respectively, and no promoter-like sequences have been found in these regions. The myrD gene starts 224 nt upstream of myrA and is divergently transcribed. The myrB sequence was found to be completely identical to the one flanking the transposon in the mutant. Therefore, we could ascertain that the transposon had been inserted inside the myrB gene, in complete agreement with the accumulation of (E)-2-methyl-6-methylen-2,7-octadien-1-ol by the mutant. Based on sequence and biotransformation data, we propose a pathway for β-myrcene catabolism in Pseudomonas sp. strain M1. 相似文献