首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The relationship between anode microbial characteristics and electrochemical parameters in microbial fuel cells (MFCs) was analyzed by time-course sampling of parallel single-bottle MFCs operated under identical conditions. While voltage stabilized within 4 days, anode biofilms continued growing during the six-week operation. Viable cell density increased asymptotically, but membrane-compromised cells accumulated steadily from only 9% of total cells on day 3 to 52% at 6 weeks. Electrochemical performance followed the viable cell trend, with a positive correlation for power density and an inverse correlation for anode charge transfer resistance. The biofilm architecture shifted from rod-shaped, dispersed cells to more filamentous structures, with the continuous detection of Geobacter sulfurreducens-like 16S rRNA fragments throughout operation and the emergence of a community member related to a known phenazine-producing Pseudomonas species. A drop in cathode open circuit potential between weeks two and three suggested that uncontrolled biofilm growth on the cathode deleteriously affects system performance.  相似文献   

2.
The ability to directly modify native and established biofilms has enormous potential in understanding microbial ecology and application of biofilm in 'real-world' systems. However, efficient genetic transformation of established biofilms at any scale remains challenging. In this study, we applied an ultrasound-mediated DNA delivery (UDD) technique to introduce plasmid to established non-competent biofilms in situ. Two different plasmids containing genes coding for superfolder green fluorescent protein (sfGFP) and the flavin synthesis pathway were introduced into established bacterial biofilms in microfluidic flow (transformation efficiency of 3.9 ± 0.3 × 10-7 cells in biofilm) and microbial fuel cells (MFCs), respectively, both employing UDD. Gene expression and functional effects of genetically modified bacterial biofilms were observed, where some cells in UDD-treated Pseudomonas putida UWC1 biofilms expressed sfGFP in flow cells and UDD-treated Shewanella oneidensis MR-1 biofilms generated significantly (P < 0.05) greater (61%) bioelectricity production (21.9 ± 1.2 µA cm−2) in MFC than a wild-type control group (~ 13.6 ± 1.6 µA cm−2). The effects of UDD were amplified in subsequent growth under selection pressure due to antibiotic resistance and metabolism enhancement. UDD-induced gene transfer on biofilms grown in both microbial flow cells and MFC systems was successfully demonstrated, with working volumes of 0.16 cm3 and 300 cm3, respectively, demonstrating a significant scale-up in operating volume. This is the first study to report on a potentially scalable direct genetic engineering method for established non-competent biofilms, which can be exploited in enhancing their capability towards environmental, industrial and medical applications.  相似文献   

3.
Geobacter sulfurreducens produces current densities in microbial fuel cells that are among the highest known for pure cultures. The possibility of adapting this organism to produce even higher current densities was evaluated. A system in which a graphite anode was poised at −400 mV (versus Ag/AgCl) was inoculated with the wild-type strain of G. sulfurreducens, strain DL-1. An isolate, designated strain KN400, was recovered from the biofilm after 5 months of growth on the electrode. KN400 was much more effective in current production than strain DL-1. This was apparent with anodes poised at −400 mV, as well as in systems run in true fuel cell mode. KN400 had current (7.6 A/m2) and power (3.9 W/m2) densities that respectively were substantially higher than those of DL1 (1.4 A/m2 and 0.5 W/m2). On a per cell basis KN400 was more effective in current production than DL1, requiring thinner biofilms to make equivalent current. The enhanced capacity for current production in KN400 was associated with a greater abundance of electrically conductive microbial nanowires than DL1 and lower internal resistance (0.015 versus 0.130 Ω/m2) and mass transfer limitation in KN400 fuel cells. KN400 produced flagella, whereas DL1 does not. Surprisingly, KN400 had much less outer-surface c-type cytochromes than DL1. KN400 also had a greater propensity to form biofilms on glass or graphite than DL1, even when growing with the soluble electron acceptor, fumarate. These results demonstrate that it is possible to enhance the ability of microorganisms to electrochemically interact with electrodes with the appropriate selective pressure and that improved current production is associated with clear differences in the properties of the outer surface of the cell that may provide insights into the mechanisms for microbe–electrode interactions.  相似文献   

4.
Dissimilatory metal reducer Geobacter sulfurreducens can mediate redox processes through extracellular electron transfer and exhibit potential-dependent electrochemical activity in biofilm. Understanding the microbial acclimation to potential is of critical importance for developing robust electrochemically active biofilms and facilitating their environmental, geochemical, and energy applications. In this study, the metabolism and redox conduction behaviors of G. sulfurreducens biofilms developed at different potentials were explored. We found that electrochemical acclimation occurred at the initial hours of polarizing G. sulfurreducens cells to the potentials. Two mechanisms of acclimation were found, depending on the polarizing potential. In the mature biofilms, a low level of biosynthesis and a high level of catabolism were maintained at +0.2 V versus standard hydrogen electrode (SHE). The opposite results were observed at potentials higher than or equal to +0.4 V versus SHE. The potential also regulated the constitution of the electron transfer network by synthesizing more extracellular cytochrome c such as OmcS at 0.0 and +0.2 V and exhibited a better conductivity. These findings provide reasonable explanations for the mechanism governing the electrochemical respiration and activity in G. sulfurreducens biofilms.  相似文献   

5.
A study on biofilm formation was carried out using five methicillin-sensitive [MSSA] and five methicillin-resistant [MRSA] strains of S. aureus. In each group, there were four strains isolated from patients from Kinshasa (Democratic Republic of Congo, DRC) and one reference strain. All of the strains were hydrophobic. The adherence of the bacteria to an abiotic surface was studied with the Biofilm Ring Test (BFRT®) and the crystal violet staining method (CVSM). Both techniques showed that eight of the strains formed biofilms within 2–3 h. The extent of the biofilm formed by one strain could only be observed with the CVSM. Periodate prevented the formation of biofilms and, in separate experiments, destroyed the biofilm pre-formed by the MSSA reference, but not those pre-formed by the clinical strains. Proteinase K destroyed all pre-formed biofilms. Six of the strains were icaA+; the clinical MSSA strains were not. The results also indicated different mechanisms of biofilm development between MSSA and MRSA clinical strains. The BFRT® and the CVSM are complementary techniques to study the adhesion of bacteria and the development of biofilms.  相似文献   

6.
The limitation of pH inside electrode‐respiring biofilms is a well‐known concept. However, little is known about how pH and redox potential are affected by increasing current inside biofilms respiring on electrodes. Quantifying the variations in pH and redox potential with increasing current is needed to determine how electron transfer is tied to proton transfer within the biofilm. In this research, we quantified pH and redox potential variations in electrode‐respiring Geobacter sulfurreducens biofilms as a function of respiration rates, measured as current. We also characterized pH and redox potential at the counter electrode. We concluded that (1) pH continued to decrease in the biofilm through different growth phases, showing that the pH is not always a limiting factor in a biofilm and (2) decreasing pH and increasing redox potential at the biofilm electrode were associated only with the biofilm, demonstrating that G. sulfurreducens biofilms respire in a unique internal environment. Redox potential inside the biofilm was also compared to the local biofilm potential measured by a graphite microelectrode, where the tip of the microelectrode was allowed to acclimatize inside the biofilm. Biotechnol. Bioeng. 2012; 109: 2651–2662. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Power densities produced by microbial fuel cells (MFCs) in natural systems are changed by exposure to light through the enrichment of photosynthetic microorganisms. When MFCs with brush anodes were exposed to light (4000 lx), power densities increased by 8–10% for glucose-fed reactors, and 34% for acetate-fed reactors. Denaturing gradient gel electrophoresis (DGGE) profiles based on the 16S rRNA gene showed that exposure to high light levels changed the microbial communities on the anodes. Based on 16S rRNA gene clone libraries of light-exposed systems the anode communities using glucose were also significantly different than those fed acetate. Dominant bacteria that are known exoelectrogens were identified in the anode biofilm, including a purple nonsulfur (PNS) photosynthetic bacterium, Rhodopseudomonas palustris, and a dissimilatory iron-reducing bacterium, Geobacter sulfurreducens. Pure culture tests confirmed that PNS photosynthetic bacteria increased power production when exposed to high light intensities (4000 lx). These results demonstrate that power production and community composition are affected by light conditions as well as electron donors in single-chamber air-cathode MFCs.  相似文献   

8.
This study uncovered microbial characteristics of bioelectricity generation and dye decolorization in single-chamber microbial fuel cells (MFCs) using activated sludge for wine-containing wastewater treatment. Phylogenetic tree analysis on 16S rRNA gene fragments indicated that the predominant strains on anodic biofilm in acclimatized MFCs were Gamma-Proteobacteria Aeromonas punctata NIU-P9, Pseudomonas plecoglossicida NIU-Y3, Pseudomonas koreensis NIU-X8, Acinetobacter junii NIU-Y8, Stenotrophomonas maltophila NIU-X2. Our findings showed that the current production capabilities of these pure strains were only ca. 10% of those of their mother activated sludge, indicating that synergistic interactions among microbes might be the most influential factor to maximize power generation in MFCs. Plus, these electrochemically active strains also performed reductive decolorization of C.I. reactive blue 160, suggesting that bioelectricity generation might be directly associated to azo dye decolorization to deal with electron transfer on anodic biofilm in MFCs.  相似文献   

9.
Anodic microbial communities in acetate-fed microbial fuel cells (MFCs) were analyzed using stable-isotope probing of 16S rRNA genes followed by denaturing gradient gel electrophoresis. The results revealed that Geobacter sulfurreducens and Hydrogenophaga sp. predominated in the anodic biofilm. Although the predominance of Geobacter sp. as acetoclastic exoelectrogens in acetate-fed MFC systems has been often reported, the ecophysiological role of Hydrogenophaga sp. is unknown. Therefore, we isolated and characterized a bacterium closely related to Hydrogenophaga sp. (designated strain AR20). The newly isolated strain AR20 could use molecular hydrogen (H2), but not acetate, with carbon electrode as the electron acceptor, indicating that the strain AR20 was a hydrogenotrophic exoelectrogen. This evidence raises a hypothesis that acetate was oxidized by G. sulfurreducens in syntrophic cooperation with the strain AR20 as a hydrogen-consuming partner in the acetate-fed MFC. To prove this hypothesis, G. sulfurreducens strain PCA was cocultivated with the strain AR20 in the acetate-fed MFC without any dissolved electron acceptors. In the coculture MFC of G. sulfurreducens and strain AR20, current generation and acetate degradation were the highest, and the growth of strain AR20 was observed. No current generation, acetate degradation and cell growth occurred in the strain AR20 pure culture MFC. These results show for the first time that G. sulfurreducens can oxidize acetate in syntrophic cooperation with the isolated Hydrogenophaga sp. strain AR20, with electrode as the electron acceptor.  相似文献   

10.
Transmission is a main route for bacterial contamination, involving bacterial detachment from a donor and adhesion to receiver surfaces. This work aimed to compare transmission of an extracellular polymeric substance (EPS) producing and a non-EPS producing Staphylococcus epidermidis strain from biofilms on stainless steel. After transmission, donor surfaces remained fully covered with biofilm, indicating transmission through cohesive failure in the biofilm. Counter to the numbers of biofilm bacteria, the donor and receiver biofilm thicknesses did not add up to the pre-transmission donor biofilm thickness, suggesting more compact biofilms after transmission, especially for non-EPS producing staphylococci. Accordingly, staphylococcal density per unit biofilm volume had increased from 0.20 to 0.52 μm–3 for transmission of the non-EPS producing strain under high contact pressure. The EPS producing strain had similar densities before and after transmission (0.17 μm–3). This suggests three phases in biofilm transmission: (1) compression, (2) separation and (3) relaxation of biofilm structure to its pre-transmission density in EPS-rich biofilms.  相似文献   

11.
Chlorination is an effective method to control biofilm formation in enclosed pipelines. To date, very little is known about how to control biofilms at the mesoscale in complex pipelines through chlorination. In this study, the dynamic of microbial communities was examined under different residual chlorine concentrations on the biofilms attached to labyrinth channels for drip irrigation using reclaimed water. The results indicated that the microbial phospholipid fatty acids, extracellular polymeric substances, microbial dynamics, and the ace and Shannon microbial diversity indices showed a gradual decrease after chlorination. However, chlorination increased microbial activity by 0.5–19.2%. The increase in the relative abundances of chloride-resistant bacteria (Acinetobacter and Thermomonas) could lead to a potential risk of chlorine resistance. Thus, keeping a low chlorine concentration (0.83?mg l?1 for 3?h) is effective for controlling biofilm formation in the labyrinth channels.  相似文献   

12.
Drinking water distribution networks are known to harbor microbial biofilms. The aim of the present work is to (i) identify the culturable bacteria presented in the drinking-water distribution network, (ii) investigate the ability of isolated bacteria to form biofilm under some environmental stress conditions and some eliminating or removing treatments. To achieve it, 57 strains were isolated from biofilm (43 isolates) and water samples (14 isolates) collected from five stations in drinking-water distribution network in Taif city, Kingdom of Saudi Arabia (KSA). Partial sequences of 16S rRNA gene in the 57 isolates ensured the presence of only 22 different strains in biofilm samples. Among these strains, only 14 strains were also detected in water samples. Gram-negative Aeromonas hydrophila was the most occurred bacterium in the microbial biofilm obtained from the purified-water storage tanks followed by Gram-negative Pseudomonas sp. Gram-positive Bacillus subtilis was the most occurred bacterium in the microbial biofilm collected from the ends of the distribution pipes. Among the 22 isolated strains, 13 strains were strong biofilm producers at 30 and 37°C. The effects of environmental stresses including nutrient starvation (diluted TSB, 20:1), heating (100°C for 10 min), UV-treatment (240 nm for 10 min) and dynamic incubation (150 rpm min?1) on the formation of biofilm were also investigated. These conditions affected the biofilm formation ability of the isolated strains at different levels. Nutrient starvation enhanced biofilm formation by most of the isolates. Among some biofilm deforming treatments, SDS and trypsin had considerable effects on preventing biofilm formation by most of the isolated strains. In conclusion, the results of the present work indicated that not all biofilm strains released from biofilm to the drinking water. Also, not all biofilm strains were able to form biofilm. Most of isolated bacteria had ability to form biofilm at suboptimum temperature of growth. These results may provide basic information on formation of microbial biofilms and overcome the problem of deteriorating of water quality in the drinking-water distribution networks.  相似文献   

13.
Electricity from microorganisms   总被引:1,自引:0,他引:1  
V. G. Debabov 《Microbiology》2008,77(2):123-131
Over the last ten years, the recently discovered process of direct electron transfer from anaerobically grown microorganisms to an electrode of a fuel cell has been the object of intense study. The microorganisms responsible for such electron transport were termed electrogenic; the devices using them to generate electric current, microbial fuel cells (MFCs). The review discussed the molecular mechanisms of electron transfer to the environment in the case of the two best studied microorganisms, Shewanella oneidensis and Geobacter sulfurreducens. The discovery of bacterial conducting pili (nanowires) used for electron transfer to the electrode and between bacterial cells was sensational. In the real MFCs, which use complex substrates (industrial liquid waste), microbial associations are active, often as biofilms. The progress in MFCs design and the prospects of their practical application are considered.  相似文献   

14.
Acidic biofilms present on cave walls in the sulfidic region of the Frasassi Gorge, Italy, were investigated to determine their microbial composition and their potential role in cave formation and ecosystem functioning. All biofilm samples examined had pH values &lt; 1.0. Scanning electron microscopy of the biofilms revealed the presence of various filaments and rods associated in large clusters with mineral crystals. Qualitative energy-dispersive x-ray analysis was used to determine that the crystals present on the cave walls, associated with the microbial biofilm, were composed of calcium and barium sulfate. Ribosomal RNA-based methods to determine the microbial composition of these biofilms revealed the presence of at least two strains of potential acidophilic, sulfur-oxidizing bacteria, belonging to the genera Thiobacillus and Sulfobacillus. An acid-producing strain of Thiobacillus sp. also was obtained in pure culture. Stable isotope ratio analysis of carbon and nitrogen showed that the wall biofilms are isotopically light, suggesting that in situ chemoautotrophic activity plays an important role in this subsurface ecosystem.  相似文献   

15.
Conditions in microbial fuel cells (MFCs) differ from those in microbial electrolysis cells (MECs) due to the intrusion of oxygen through the cathode and the release of H2 gas into solution. Based on 16S rRNA gene clone libraries, anode communities in reactors fed acetic acid decreased in species richness and diversity, and increased in numbers of Geobacter sulfurreducens, when reactors were shifted from MFCs to MECs. With a complex source of organic matter (potato wastewater), the proportion of Geobacteraceae remained constant when MFCs were converted into MECs, but the percentage of clones belonging to G. sulfurreducens decreased and the percentage of G. metallireducens clones increased. A dairy manure wastewater-fed MFC produced little power, and had more diverse microbial communities, but did not generate current in an MEC. These results show changes in Geobacter species in response to the MEC environment and that higher species diversity is not correlated with current.  相似文献   

16.
Geobacter sulfurreducens developed highly structured, multilayer biofilms on the anode surface of a microbial fuel cell converting acetate to electricity. Cells at a distance from the anode remained viable, and there was no decrease in the efficiency of current production as the thickness of the biofilm increased. Genetic studies demonstrated that efficient electron transfer through the biofilm required the presence of electrically conductive pili. These pili may represent an electronic network permeating the biofilm that can promote long-range electrical transfer in an energy-efficient manner, increasing electricity production more than 10-fold.  相似文献   

17.
Yang Y  Sun G  Guo J  Xu M 《Bioresource technology》2011,102(14):7093-7098
Biofilms formation capacities of Shewanella species in microbial fuel cells (MFCs) and their roles in current generation have been documented to be species-dependent. Understandings of the biofilms growth and metabolism are essential to optimize the current generation of MFCs. Shewanella decolorationis S12 was used in both closed-circuit and open-circuit MFCs in this study. The anodic S. decolorationis S12 biofilms could generate fivefold more current than the planktonic cells, playing a dominant role in current generation. Anodic biofilms viability was sustained at 98 ± 1.2% in closed-circuit while biofilms viability in open-circuit decreased to 72 ± 7% within 96 h. The unviable domain in open-circuit MFCs biofilms majorly located at the inner layer of biofilm. The decreased biofilms viability in open-circuit MFCs could be recovered by switching into closed-circuit, indicating that the current-generating anode in MFCs could serve as a favorable electron acceptor and provide sufficient energy to support cell growth and metabolism inside biofilms.  相似文献   

18.
A mediator-less three-stage two-chamber microbial fuel cell (MFC) system was developed and operated continuously for more than 1.5 years to evaluate continuous power generation while treating artificial wastewater containing glucose (10 mM) concurrently. A stable power density of 28 W/m3 was attained with an anode hydraulic retention time of 4.5 h and phosphate buffer as the cathode electrolyte. An overall dissolved organic carbon removal ratio was about 85%, and coulombic efficiency was about 46% in this MFC system. We also analyzed the microbial community structure of anode biofilms in each MFC. Since the environment in each MFC was different due to passing on the products to the next MFC in series, the microbial community structure was different accordingly. The anode biofilm in the first MFC consisted mainly of bacteria belonging to the Gammaproteobacteria, identified as Aeromonas sp., while the Firmicutes dominated the anode biofilms in the second and third MFCs that were mainly fed with acetate. Cyclic voltammetric results supported the presence of a redox compound(s) associated with the anode biofilm matrix, rather than mobile (dissolved) forms, which could be responsible for the electron transfer to the anode. Scanning electron microscopy revealed that the anode biofilms were comprised of morphologically different cells that were firmly attached on the anode surface and interconnected each other with anchor-like filamentous appendages, which might support the results of cyclic voltammetry. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Srijan Aggarwal 《Biofouling》2013,29(4):479-486
Recently, a micro-cantilever method was introduced for measuring the ultimate tensile strength of intact bacterial biofilms. Herein, is reported the analysis of the video files from the testing of a 4-day-old Staphylococcus epidermidis biofilm to determine the elastic modulus, toughness, and failure strain. Elastic modulus (1270±280 Pa) was within the range of previously reported values (17–6000 Pa). The high failure strains (240±16%) indicate the substantial ductility of bacterial biofilms. In addition, the toughness of the biofilm sample was determined from the area under the stress–strain plot (2.8±0.44 kJ m?3). Thus, it was demonstrated that the micro-cantilever test video files can be used for the determination of other mechanical property parameters besides ultimate tensile strength.  相似文献   

20.
Formation of biofilms in dairy membrane plants causes membrane pore blocking, product contamination and subsequent economic loss. To investigate the biofilm growth, two Klebsiella oxytoca strains, K. B006 and TR002, previously isolated from New Zealand dairy membrane plants, were grown both individually and combined on three types of ultrafiltration (UF) membranes in different concentrations of whey medium in biofilm reactors (CBR 90, BioSurface Technologies, Bozeman, USA). Biofilms of both the individual and combined strains grew on the membrane surfaces to levels of 4.9–7.99 log colony-forming units (CFU) cm−2 measured by standard plate counting after removing the cells by sonication. More biofilm grew on used polyethersulfone (PES) membranes than on new PES and polyvinylidene fluoride (PVDF) membranes. Both strains formed good biofilms, although K. B006 formed a denser biofilm than TR002. This corresponded to our previous study on the attachment of these organisms, where K. B006 attached in greater numbers than K. TR002. The dual strains produced a higher biofilm density than single strains on the new membranes. Biofilm density tended to increase with increased whey concentration. The saturated biofilm was approximately 108 CFU cm−2. PES membranes appeared to support biofilm growth less readily than did PVDF membranes and therefore may be the preferred material for UF membranes to reduce problems with microbial colonisation. Used membranes were more readily colonised with biofilm than were new membranes. Therefore, selecting a membrane type and monitoring membrane age will help manage biofilm development during UF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号