首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the study is to assess the efficiency of a novel bioremediation system namely baffled duckweed pond (BDWP) system for the treatment of agricultural drainage water containing pharmaceuticals at different hydraulic retention times (HRTs). The removal efficiencies of acetaminophen (ACT), amoxicillin (AMX), and ampicillin (AMP) increased from 69.3 ± 8.6 to 87.3 ± 3.5%, from 52.9 ± 9.4 to 82.9 ± 5.2%, and from 55.3 ± 7.9 to 90.6 ± 2.8% at increasing the HRT from 6 to 8 days, respectively. However, ACT, AMX, and AMP removal efficiencies were slightly improved at increasing the HRT from 8 to 12 days. Diclofenac (DFC) removal efficiencies amounted to 56.6 ± 11.6, 55.7 ± 11.9, and 28.3 ± 12.9% at an HRTs of 12, 8, and 6 days, respectively. The results showed no relationship between the uptake/absorption of pharmaceuticals fractions and BOD5/chemical oxygen demand (COD) ratio except ACT where R2 was 0.84. The effect of COD/N ratio on the removal efficiency of pharmaceuticals fractions was slight. Additional removal of pharmaceuticals fractions and nitrification occurred in carrier sponge media situated in the last compartment of the BDWP.  相似文献   

2.
In this study, a three-stage-integrated process using the hydrogenic process (BioH2), methanogenic process (BioCH4), and a microbial fuel cell (MFC) was operated using molasses wastewater. The contribution of individual processes to chemical oxygen demand (COD) removal and energy production was evaluated. The three-stage integration system was operated at molasses of 20 g-COD L?1, and each process achieved hydrogen production rate of 1.1 ± 0.24 L-H2 L?1 day?1, methane production rate of 311 ± 18.94 mL-CH4 L?1 day?1, and production rate per electrode surface area of 10.8 ± 1.4 g m?2 day?1. The three-stage integration system generated energy production of 32.32 kJ g-COD?1 and achieved COD removal of 98 %. The contribution of BioH2, BioCH4, and the MFC reactor was 20.8, 72.2, and, 7.0 % of the total COD removal, and 18.7, 81.2, and 0.16 % of the total energy production, respectively. The continuous stirred-tank reactor BioH2 at HRT of 1 day, up-flow anaerobic sludge blanket BioCH4 at HRT of 2 days, and MFC reactor at HRT of 3 days were decided in 1:2:3 ratios of working volume under hydraulic retention time consideration. This integration system can be applied to various configurations depending on target wastewater inputs, and it is expected to enhance energy recovery and reduce environmental impact of the final effluent.  相似文献   

3.
Grey wastewater (GW) treatment via down-flow hanging sponge (DHS) system was the subject of the study. The reactor was operated at different hydraulic retention times (HRTs) of 11.7, 5.8 and 2.9 h, corresponding to organic loading rates (OLRs) of 1.9, 3.6 and 6.8 kgCOD/m3 day, respectively. The results obtained revealed that decreasing the HRT from 11.7 to 2.9 h negatively affected on the performance of the DHS system. CODtotal, CODsoluble, CODparticulate and detergent removal efficiency were reduced from 96 ± 2.4 to 90 ± 2.3%, from 83 ± 10 to 69 ± 8%, from 98 ± 2 to 94 ± 3% and from 96 ± 12 to 88 ± 6.9%, respectively. However, the removal efficiency of the distinguished COD fractions and detergent remained unaffected when decreasing the HRT from 11.7 to 5.8 h. The DHS system provided a removal efficiency of 95 ± 1% for CODtotal, 79 ± 8% for CODsoluble, 98 ± 2 for CODparticulate and 94.7% for detergent at an HRT of 5.8 h. Based on these results, it is recommended to operate such a system at an HRT of 5.8 h and OLR not exceeding 3.6 kgCOD/m3 day for producing an effluent quality complying for reuse in unrestricted irrigation purposes. The removal of TKj-N and nitrification efficiency in the DHS system was significantly affected by increasing the OLR from 1.9 to 3.6 kgCOD/m3 day and from 3.6 to 6.8 kgCOD/m3 day. At an OLR of 1.9 kgCOD/m3 day, the DHS system removed 80 ± 12% of TKj-N and 91 ± 22% of ammonia which is significantly higher than that at an OLR of 3.6 (58.5 ± 13%) and 6.8 kgCOD/m3 day (26.8 ± 16%). Similar results were recorded for the removal of total coliform (TC), viz., the efficiencies dropped for TC from 99.8 ± 0.2 to 99.4 ± 0.8% and from 99.4 ± 0.8 to 90.0 ± 7.6%, respectively. DHS profile results showed that the major part of COD was removed in the upper portion of the system while the nitrification process was taken place in the lower part of the DHS system at OLR of 1.9 kgCOD/m3 day and HRT of 11.7 h.  相似文献   

4.
An integrated field and laboratory study was conducted to quantify the effect of environmental determinants on the activity of sulfate reducers in a freshwater aquifer contaminated with petroleum hydrocarbons (PHC). Within the contaminated zone, PHC-supported in␣situ sulfate reduction rates varied from 11.58±3.12 to 636±53 nmol cm−3 d−1 and a linear increase (R 2=0.98) in reduction rate was observed with increasing in situ sulfate concentrations suggesting sulfate limitation. Half-saturation concentration (K s) for sulfate reduction coupled to PHC mineralization was determined for the first time. At two different sites within the␣aquifer, maximum sulfate reduction rate under␣non-limiting conditions (R max) was 5,000 nmol cm−3 d−1, whereas the retrieved K s values were 3.5 and 7.5 mM, respectively. The K s values are the highest ever reported from a natural environment. Furthermore, the K s values were significantly higher than in situ sulfate concentrations confirming sulfate limited growth. On addition of lactate and formate, sulfate reduction rate increased indicating that reactivity and bioavailability of organic substrate may also have played a role in rate inhibition in certain parts of the aquifer. Experiments with sulfide amendments show statistically minor decrease in sulfate reduction rates on addition of sulfide and analogous increase in sulfide toxicity with increasing sulfide concentrations (0.5–10 mM) was not apparent.  相似文献   

5.
The extent of fractionation of sulfur isotopes by sulfate‐reducing microbes is dictated by genomic and environmental factors. A greater understanding of species‐specific fractionations may better inform interpretation of sulfur isotopes preserved in the rock record. To examine whether gene diversity influences net isotopic fractionation in situ, we assessed environmental chemistry, sulfate reduction rates, diversity of putative sulfur‐metabolizing organisms by 16S rRNA and dissimilatory sulfite reductase (dsrB) gene amplicon sequencing, and net fractionation of sulfur isotopes along a sediment transect of a hypersaline Arctic spring. In situ sulfate reduction rates yielded minimum cell‐specific sulfate reduction rates < 0.3 × 10?15 moles cell?1 day?1. Neither 16S rRNA nor dsrB diversity indices correlated with relatively constant (38‰–45‰) net isotope fractionation (ε34Ssulfide‐sulfate). Measured ε34S values could be reproduced in a mechanistic fractionation model if 1%–2% of the microbial community (10%–60% of Deltaproteobacteria) were engaged in sulfate respiration, indicating heterogeneous respiratory activity within sulfate‐reducing populations. This model indicated enzymatic kinetic diversity of Apr was more likely to correlate with sulfur fractionation than DsrB. We propose that, above a threshold Shannon diversity value of 0.8 for dsrB, the influence of the specific composition of the microbial community responsible for generating an isotope signal is overprinted by the control exerted by environmental variables on microbial physiology.  相似文献   

6.
Hydrolysate was tested as substrate for hydrogen production by extreme thermophilic mixed culture (70°C) in both batch and continuously fed reactors. Hydrogen was produced at hydrolysate concentrations up to 25% (v/v), while no hydrogen was produced at hydrolysate concentration of 30% (v/v), indicating that hydrolysate at high concentrations was inhibiting the hydrogen fermentation process. In addition, the lag phase for hydrogen production was strongly influenced by the hydrolysate concentration, and was prolonged from approximately 11 h at the hydrolysate concentrations below 20% (v/v) to 38 h at the hydrolysate concentration of 25% (v/v). The maximum hydrogen yield as determined in batch assays was 318.4 ± 5.2 mL‐H2/g‐sugars (14.2 ± 0.2 mmol‐H2/g‐sugars) at the hydrolysate concentration of 5% (v/v). Continuously fed, and the continuously stirred tank reactor (CSTR), operating at 3 day hydraulic retention time (HRT) and fed with 20% (v/v) hydrolysate could successfully produce hydrogen. The hydrogen yield and production rate were 178.0 ± 10.1 mL‐H2/g‐sugars (7.9 ± 0.4 mmol H2/g‐sugars) and 184.0 ± 10.7 mL‐H2/day Lreactor (8.2 ± 0.5 mmol‐H2/day Lreactor), respectively, corresponding to 12% of the chemical oxygen demand (COD) from sugars. Additionally, it was found that toxic compounds, furfural and hydroxymethylfurfural (HMF), contained in the hydrolysate were effectively degraded in the CSTR, and their concentrations were reduced from 50 and 28 mg/L, respectively, to undetectable concentrations in the effluent. Phylogenetic analysis of the mixed culture revealed that members involved hydrogen producers in both batch and CSTR reactors were phylogenetically related to the Caldanaerobacter subteraneus, Thermoanaerobacter subteraneus, and Thermoanaerobacterium thermosaccharolyticum. Biotechnol. Bioeng. 2010;105: 899–908. © 2009 Wiley Periodicals, Inc.  相似文献   

7.
The performance of a laboratory-scale sewage treatment system composed of an up-flow anaerobic sludge blanket (UASB) reactor and a moving bed biofilm reactor (MBBR) at a temperature of (22–35 °C) was evaluated. The entire treatment system was operated at different hydraulic retention times (HRT’s) of 13.3, 10 and 5.0 h. An overall reduction of 80–86% for CODtotal; 51–73% for CODcolloidal and 20–55% for CODsoluble was found at a total HRT of 5–10 h, respectively. By prolonging the HRT to 13.3 h, the removal efficiencies of CODtotal, CODcolloidal and CODsoluble increased up to 92, 89 and 80%, respectively. However, the removal efficiency of CODsuspended in the combined system remained unaffected when increasing the total HRT from 5 to 10 h and from 10 to 13.3 h. This indicates that, the removal of CODsuspended was independent on the imposed HRT. Ammonia-nitrogen removal in MBBR treating UASB reactor effluent was significantly influenced by organic loading rate (OLR). 62% of ammonia was eliminated at OLR of 4.6 g COD m−2 day−1. The removal efficiency was decreased by a value of 34 and 43% at a higher OLR’s of 7.4 and 17.8 g COD m−2 day−1, respectively. The mean overall residual counts of faecal coliform in the final effluent were 8.9 × 104 MPN per 100 ml at a HRT of 13.3 h, 4.9 × 105 MPN per 100 ml at a HRT of 10 h and 9.4 × 105 MPN per 100 ml at a HRT of 5.0 h, corresponding to overall log10 reduction of 2.3, 1.4 and 0.7, respectively. The discharged sludge from UASB–MBBR exerts an excellent settling property. Moreover, the mean value of the net sludge yield was only 6% in UASB reactor and 7% in the MBBR of the total influent COD at a total HRT of 13.3 h. Accordingly, the use of the combined UASB–MBBR system for sewage treatment is recommended at a total HRT of 13.3 h.  相似文献   

8.
The effects of lowering the operational pH from 6 to 5 on mesophilic (30 °C) sulfate reduction during the acidification of sucrose at an organic loading rate of 5 gCOD (lreactor d)−1 and at a COD/SO42− ratio of 4 were evaluated in a CSTR and in a UASB reactor. The HRT was 24 h and 10 h, respectively. Acidification was complete in both reactors at pH 6 and the lowering of the operational pH to 5 did not affect the acidification efficiency in the CSTR but decreased the acidification efficiency of the UASB to 72%. The decrease to pH 5 caused an increase in the effluent butyrate and ethanol concentrations in both reactors. Lowering the pH from 6 to 5 caused a decrease in sulfate reduction efficiencies in both reactors, from 43% to 25% in the CSTR and from 95% to 34% in the UASB reactor. The acidification and sulfate reduction efficiencies at pH 5 could be increased to 94% and 67%, respectively, by increasing the HRT of the UASB reactor to 24 h.  相似文献   

9.
In order to investigate the influence of hydraulic retention time (HRT) on organic pollutant removal in a submerged membrane bioreactor (SMBR), a laboratory-scale experiment was conducted using domestic sewage as influent. The dissolved oxygen (DO) concentration was controlled at 2.0– during the experimental period. The experiments demonstrated that when HRT was 3, 2 and 1 h, the reduction of chemical oxygen demand (COD) was 89.3–97.2, 88.5–97.3 and 80–91.1%, and the effluent COD was 38.9–11.2, 41.6–10.8 and 63.4–, respectively. It is suggested that an HRT of 1 h could meet the normal standard of discharged domestic sewage, and an HRT of 2 h could meet that of water reclamation. In addition, we use mathematical software MATLAB to analyse the relation of mixed liquor suspended solids (MLSS) and COD removal. The results showed that the optimum MLSS concentration should be maintained at around in the SMBR. The results also showed that the COD removal was related to HRT (τ), influent concentration (S0) and sludge loading rate for COD removal (NS). Moreover, the high COD removal could be achieved through adjusting τ, S0 and NS.  相似文献   

10.
Removal of selected metals from municipal wastewater using a constructed wetland with a horizontal subsurface flow was studied. The objective of the work was to determine the efficiency of Cu, Zn, Ni, Co, Sr, Li, and Rb removal, and to describe the main removal mechanisms. The highest removal efficiencies were attained for zinc and copper (89.8 and 81.5%, respectively). It is apparently due to the precipitation of insoluble sulfides (ZnS, CuS) in the vegetation bed where the sulfate reduction takes place. Significantly lower removal efficiencies (43.9, 27.7, and 21.5%) were observed for Li, Sr, and Rb, respectively. Rather, low removal efficiencies were also attained for Ni and Co (39.8 and 20.9%). However, the concentrations of these metals in treated water were significantly lower compared to Cu and Zn (e.g., 2.8 ± 0.5 and 1.7 ± 0.3 μg/l for Ni at the inflow and outflow from the wetland compared to 27.6 ± 12.0 and 5.1 ± 4.7 μg/l obtained for Cu, respectively). The main perspective of the constructed wetland is the removal of toxic heavy metals forming insoluble compounds depositing in the wetland bed. Metal uptake occurs preferentially in wetland sediments and is closely associated with the chemism of sulfur and iron.  相似文献   

11.
An algal-bacterial microcosm was synthetically constructed of Chlorella vulgaris MMl and Pseudomonas MTl. This microcosm was able to treat simulated wastewater supplemented with mixtures of phenol and pyridine up to 4.6 and 4.4 mM, respectively, in a continuous stirred tank bioreactor (CSTR) using photosynthetic oxygenation. Complete pollutant removal and detoxification and 82 % removal of introduced chemical oxygen demand (COD) were achieved at a hydraulic retention time (HRT) of 2.7 days. Increasing the influent load to 5.3 and 6.3 mM reduced the removal of phenol, pyridine and COD to 78, 21 and 59 %, respectively. Fertilization of the photobioreactor with 24 mM NaHCO3 restored the treatment and detoxification efficiencies. The system was able to additionally mitigate up to 72 mM NaHCO3 at the same HRT. Although the fertilization increased the system treatment efficiency, the settleability of the algal-bacterial microcosm was significantly reduced. When the photobioreactor was operated at HRT of 2.7 days in a 12/12 h of dark/light cycle, complete removal of 4.7 mM phenol was recorded but only 11 % of 5.7 mM pyridine was removed. The COD removal efficiency and CO2 mitigation were also reduced to 65 and 86 %, respectively, and the effluent retained significant toxicity where 73 % inhibition was recorded. Elongation of the illumination time to 48 h (HRT of 4 days at 12/12 h dark/light cycle) restored the treatment and detoxification efficiencies.  相似文献   

12.
A laboratory-scale study was conducted in a 20.0-L sequencing batch reactor (SBR) to explore the feasibility of simultaneous removal of organic carbon and nitrogen from abattoir wastewater. The reactor was operated under three different combinations of aerobic-anoxic sequence, viz., (4+4), (5+3), and (5+4) h of total react period, with influent soluble chemical oxygen demand (SCOD) and ammonia nitrogen (NH4+-N) level of 2200 ± 50 and 125 ± 5 mg L?1, respectively. In (5+4) h cycle, a maximum 90.27% of ammonia reduction corresponding to initial NH4+-N value of 122.25 mg L?1 and 91.36% of organic carbon removal corresponding to initial SCOD value of 2215.25 mg L?1 have been achieved, respectively. The biokinetic parameters such as yield coefficient (Y), endogenous decay constant (kd), and half-velocity constant (Ks) were also determined to improve the design and operation of package effluent treatment plants comprising SBR units. The specific denitrification rate (qDN) during anoxic condition was estimated as 6.135 mg N/g mixed liquor volatile suspended solid (MLVSS)·h on 4-h average contact period. The value of Y, kd and Ks for carbon oxidation and nitrification were found to be in the range of 0.6225–0.6952 mg VSS/mg SCOD, 0.0481–0.0588 day?1, and 306.56–320.51 mg L?1, and 0.2461–0.2541 mg VSS/mg NH4+-N, 0.0324–0.0565 day?1, and 38.28–50.08 mg L?1, respectively, for different combinations of react periods.  相似文献   

13.
【目的】从海洋沉积物中富集获得硫酸盐还原菌群,改变pH值进行培养,分析pH值对硫酸盐还原性质的影响,明确菌群组成和进行硫酸盐还原功能基因预测,探究硫酸盐还原机制。【方法】分析硫酸盐还原菌群在不同pH值条件下的硫酸盐还原率,在此基础上,利用高通量测序技术和PICRUSt软件分析硫酸盐还原菌群优势菌组成及硫酸盐还原相关基因相对丰度。【结果】硫酸盐还原菌群在不同pH值培养条件下的生长和硫酸盐还原率出现显著变化(P<0.01),在pH 5.0时达到峰值,分别为0.34±0.01和96.52%±0.44%。高通量测序数据显示,pH 5.0时菌群丰富度和多样性最高,优势菌属为假单胞菌(Pseudomonas)和芽孢杆菌(Bacillus),相对丰度较高的基因为同化性硫酸盐还原相关基因。【结论】硫酸盐还原菌富集生长的最适pH 5.0,在此条件下的高硫酸盐还原率由同化性硫酸盐还原途径主导,为揭示硫酸盐还原机制提供了实验支持,并拓宽了硫酸盐还原菌实践应用方面的种质资源。  相似文献   

14.
Liu  Junhua  Wang  Jingmin  Zhao  Congcong  Liu  Jianing  Xie  Huijun  Wang  Shuning  Zhang  Jian  Hu  Zhen 《Applied microbiology and biotechnology》2017,101(4):1653-1660

Wastewater treatment under low dissolved oxygen (DO) conditions is promising for its low energy consumption. However, the removal process of some organic micropollutants, such as triclosan (TCS), could be inhibited under anaerobic conditions. So, it is worth investigating the TCS removal performance at low-oxygen condition. In this study, simultaneous nitrification and denitrification (SND) process, with DO ranging from 0.30 to 0.80 mg L−1, was chosen to investigate. Results showed that the water quality of the effluent was deteriorated after TCS addition at the beginning, with removal efficiency of NH4 +-N dropped from almost 100 ± 0.70 to 88.30 ± 0.98% and COD decreased from 95.15 ± 1.55 to 65.81 ± 2.42 %. However, the performance recovered from the 3rd day and almost stabilized on the 14th day with the removal efficiencies of NH4 +-N were over 98.00 ± 0.60 %, and COD was above 94.00 ± 1.70 % in effluent. Besides, TCS removal efficiencies were more than 93.00 %, and the contributions for TCS removal by the water effluent, sludge sorption, and other effects including biodegradation were 6.46 ± 2.25, 16.27 ± 3.30, and 77.27 ± 4.45 %, respectively. Although the results of absolute abundances of related genes showed no difference (P > 0.05), Illumina MiSeq sequencing analysis presented the variation of microbial community after TCS addition, in which T-45 had the highest Shannon and Simpson diversity index, followed by T-0 and T-2. Relative abundances of alpha and beta-Proteobacteria, which were related to TCS biodegradation, were increased. Compared with Bacteroidetes in T-0, the abundance of Bacteroidetes took up more than 15.6 % in T-45, which should play a more important role under low-oxygen conditions with TCS addition.

  相似文献   

15.
Rhodobacter capsulatus was grown in chemostat cultures under different dilution rates and with ammonium ions as the limiting nutrient. The maximal growth rate (μmax) and the Monod cell growth saturation coefficient (Ks), were calculated from batch cultures grown at different concentrations of NH4 +. The experiments in chemostat were carried out at 0.25 mM (NH4)2SO4, and the dilution rates were varied between 38% and 75% of μmax. The results indicated that under continuous culture conditions the cell yield coefficient (Y) (mg dry weight × μmol consumed ammonium sulfate−1) decreased with increasing dilution rate (D). On the contrary, the cell yield was constant when expressed as mg cellular protein ×μmol consumed ammonium sulfate−1. This occurred as a consequence of both an increase in the consumed ammonium sulfate and a simultaneous decrease in the cell biomass production at increasing growth rates. The cells produced at higher growth rates had a higher protein content per cell. The specific content of bacteriochlorophyll (Bchl) decreased (between 3 and 4 times) with increasing growth rates measured in either cells or chromatophores. However, the absorption spectra of the cells indicated that the ratio LHI (light-harvesting complex I) to LHII (light-harvesting complex II) Bchl complexes did not change. The reaction center (RC) complex content varied in parallel with the total Bchl content, yielding a constant photosynthetic unit of 65 mol Bchl × mol RC−1 at different Ds. On the other hand, the uncoupled ATPase-specific activity measured in chromatophores was usually between 30% and 40% higher at the highest growth rates reached in these experiments. Received: 22 January 1996 / Accepted: 9 March 1996  相似文献   

16.
【目的】重金属钒的环境危害日益受到关注,微生物可实现高毒性的五价钒[pentavalent vanadium, V(Ⅴ)]的还原固定,其中电子供体是微生物还原V(Ⅴ)的关键,尽管天然Fe(Ⅱ)矿物和天然生物质均被报道可单独支持微生物还原V(Ⅴ),而基于两者构建的混养体系中微生物还原V(Ⅴ)的特征尚未揭示。【方法】本研究对天然Fe(Ⅱ)矿物和生物质进行优选并复配组合,探究混养生物体系中五价钒[V(Ⅴ)]的还原机理。【结果】磁黄铁矿和木屑对V(Ⅴ)的去除效率最高,分别为54.2%±3.4%和67.1%±3.1%。当优选的磁黄铁矿与木屑组合复配比例为1:3时可达到最高的V(Ⅴ)去除效率82.7%±3.1%。V(Ⅴ)被还原为不溶性V(Ⅳ)沉淀,Fe(Ⅱ)和S(–Ⅱ)分别被氧化为Fe(Ⅲ)和SO42-。在混养体系中,脱硫菌(Desulfurivibrio)和硫菌属(Thiobacillus)等自养菌属可能参与磁黄铁矿的氧化与V(Ⅴ)还原,并利用无机碳源合成有机中间代谢产物,与无胆甾原体属(Acholeplasma)等纤维素降解菌分解木屑的产物一起,被B...  相似文献   

17.
A sequencing batch reactor (SBR) seeded with methanogenic granular sludge was started up to enrich Anammox (Anaerobic Ammonium Oxidation) bacteria and to investigate the feasibility of granulation of Anammox biomass. Research results showed that hydraulic retention time (HRT) was an important factor to enrich Anammox bacteria. When the HRT was controlled at 30 days during the initial cultivation, the SBR reactor presented Anammox activity at t = 58 days. Simultaneously, the methanogenic granular sludge changed gradually from dust black to brown colour and its diameter became smaller. At t = 90 days, the Anammox activity was further improved. NH4+-N and NO2N were removed simultaneously with higher speed and the maximum removal rates reached 14.6 g NH4+-N /(m3 reactor·day) and 6.67 g NO2-N /(m3 reactor·day), respectively. Between t = 110 days and t = 161 days, the nitrogen load was increased to a HRT of 5 days (70 mg/l NH4+ and 70 mg/l NO2), the removal rates of ammonium and nitrite were 60.6% and 62.5% respectively. The sludge changed to red and formed Anammox granulation with high nitrogen removal activity.  相似文献   

18.
《Ecological Engineering》2006,26(3):272-282
A full-scale constructed wetlands system with a total area of 80 ha and treatment capability of 2.0 × 104 m3 d−1 was completed in October 1998 in Rongcheng, Shandong Province, China. To evaluate wastewater treatment effectiveness and seasonal performance of the system, water samples were collected and analyzed from January 1999 to December 2004. Comparison of mean inlet and outlet concentrations showed that the constructed wetland system could effectively reduce the output of SS (71.8 ± 8.4%), BOD5 (70.4 ± 9.6%), COD (62.2 ± 10.1%), total coliform (99.7%) and fecal coliform (99.6%). However, the percent reduction of ammonia nitrogen was relatively low (40.6 ± 15.3%), and total phosphorus showed the least efficient reduction (29.6 ± 12.8%). BOD5, COD, ammonia nitrogen, and total phosphorus removal efficiencies displayed seasonal variations. BOD5 and COD removal was more efficient in spring and summer than in autumn and winter whereas ammonia nitrogen and total phosphorus removal was more efficient in summer and autumn than in spring and winter. Annual variation analysis shows that COD, BOD5, and ammonia nitrogen reduction efficiencies increased from 1999 to 2004. In contrast, mean total phosphorus reduction efficiency did not change from 2001 to 2002 and began to decrease from 2003 onwards.  相似文献   

19.
The effects of lowering the operational pH from 6 to 5 on mesophilic (30 °C) sulfate reduction during the acidification of sucrose at an organic loading rate of 5 gCOD (lreactor d)−1 and at a COD/SO42− ratio of 4 were evaluated in a CSTR and in a UASB reactor. The HRT was 24 h and 10 h, respectively. Acidification was complete in both reactors at pH 6 and the lowering of the operational pH to 5 did not affect the acidification efficiency in the CSTR but decreased the acidification efficiency of the UASB to 72%. The decrease to pH 5 caused an increase in the effluent butyrate and ethanol concentrations in both reactors. Lowering the pH from 6 to 5 caused a decrease in sulfate reduction efficiencies in both reactors, from 43% to 25% in the CSTR and from 95% to 34% in the UASB reactor. The acidification and sulfate reduction efficiencies at pH 5 could be increased to 94% and 67%, respectively, by increasing the HRT of the UASB reactor to 24 h.  相似文献   

20.
The growth rates of 3 species of phytoplankton were found to be dependent on the vitamin B12 concentrations in the media. In batch cultures, the vitamin B12 half-saturation constants and standard errors were 0.39 ± 0.042 μμg/ml for Thalassiosira pseudonana (clone 3H), 1.69 ± 0.24 μμg/ml for Isochrysis galbana, and 2.77 ± 1.65 μμg/ml for Monochrysis lutheri. A chemostat was used to grow T. pseudonana with vitamin B12 as the controlling factor. In the chemostat the yield and standard deviation, 102 ± 21 × 104 cells/μμg vitamin B12, was the same as in the batch culture, 126 ± 13 ± 104 cells/μμg. The chemostat half-saturation constant, 0.26 ± 0.068 μμg/ml vitamin B12, and maximum growth rate were in agreement with those obtained in batch cultures. Vitamin concentrations for maximum growth, rates were greater than those calculated necessary from yield data to give observed population densities similar to those in natural waters. In the sea the effect of vitamin B12 concentration on growth rates may be complicated by low concentrations of other nutrients or the presence of inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号