首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ram spermatozoa are sensitive to extreme changes in temperature during the freeze-thaw process. The degree of damage depends on a combined effect of various factors including initial freezing temperature. The present study was conducted to observe the effect of initial freezing temperature on post-thawing motility of ram spermatozoa of native and crossbred rams maintained in a semi-arid tropical environment. Good quality semen obtained from native Malpura and crossbred Bharat Merino rams were pooled within breed and diluted at a rate of 1000 million spermatozoa per milliliter in TEST—yolk–glycerol extender. Diluted semen samples were loaded in 0.25 ml straws and cooled to −25, −75 or −125 °C freezing temperature at the rate of −25 °C/min under controlled conditions before plunging into liquid nitrogen for storage. The thawing of straws was performed at 50 °C in a water bath for 10 s and motility characteristics of the frozen-thawed spermatozoa were assessed by a computer-assisted spermatozoa analysis technique. Initial freezing temperature significantly affected the post-thawing motility of sperm in both the breeds. The post-thawing % motility and rapid motile spermatozoa were significantly higher at initial freezing temperature of −125 °C and lower at −25 or −75 °C. The percentage medium motile sperm were similar at all three initial freezing temperatures. The percentage of slow motile and linearity of sperm varied (P<0.01) between the different freezing temperatures. The curvilinear velocity, average path velocity and straight line velocity of spermatozoa were higher (P<0.01) at −125 °C than −25 or −75 °C. Although the lateral head displacement of spermatozoa did not vary significantly between the different initial freezing temperatures, the stroke frequency was significantly lower at −25 °C than −75 or −125 °C. Except for % linearity, the average path velocity and straight line velocity, other spermatozoa characteristics were not significantly different between breeds. The interaction between freezing temperature and breed was significant only for the % motility and linearity of the spermatozoa. The study indicates that initial freezing temperature has a significant effect on spermatozoa motility and velocity following post-thawing. The best motile spermatozoa following thawing were achieved at −125 °C freezing temperature.  相似文献   

2.
Climate changes, particularly the increase of temperature are among the main causes behind the decline of fertility in humans as well as animals. In this study, the effects of heat stress on some reproductive parameters of male cavies and mitigation strategies using guava leaves essential oil (GLEO) were studied. For this purpose, 40 male cavies aged 2.5–3 months and weighing between 348 and 446 g were divided into 4 groups of 10 animals each and subjected to the following temperatures: Ambient temperature (20–25 °C) for the control group, 35 °C for group 1, 45 °C for group 2 and 45 °C+100 µl GLEO/kg body weight, administered by gavage to animals for group 3. Exposure time of heat was 7 h per day for 60 days. Results reveal that the relative weights of testes, epididymis, vas deferens and seminal vesicles were hardly affected by the temperature levels considered (P>0.05). The mass and individual sperm motility was significantly lower (P<0.05) in cavies exposed to the temperature of 35 and 45 °C as compared with those which received GLEO and controls. The percentages of abnormal sperm and altered sperm DNA were higher in animals exposed to temperature of 35 and 45 °C as compared with the controls. The activity of superoxide dismutase significantly increased (P<0.05) in animals exposed to temperature of 45 °C and in those of 45 °C and orally treated with GLEO, compared with cavies exposed to temperature of 45 °C without receiving GLEO. The level of malondialdehyde was significantly increased (P<0.05) in animals exposed to temperature of 35 and 45 °C, whereas the level of nitric oxide was significantly lower (P<0.05) in exposed animals as compared with controls. It was concluded that the exposure of male cavies at 35 and 45 °C for 60 days induce heat stress that causes deterioration of sperm characteristics. These effects that can be mitigated by the administration of guava leaves essential oil.  相似文献   

3.
The objective of this study was to compare the thermotolerances of ear fibroblasts derived from Holstein (H) and Taiwan yellow cattle (Y) and their apoptosis-related protein expressions with (1, 3, 6, 12, and 24 h) or without heat shock treatment. The results showed that the vaginal temperatures of Y (38.4–38.5 °C) were (P<0.05) lower than that of H (38.8 °C) during the hot season. The apoptotic rates of ear fibroblasts derived from Y (6 h: 1.1%; 12 h: 1.6%; 24 h: 2.6%) were lower (P<0.05) than those of cells derived from H (6 h: 1.8%; 12 h: 4.0%; 24 h: 6.9%), respectively, after heat shock (42 °C). The expression level of apoptosis inducing factor (AIF) in ear fibroblasts derived from H was higher (P<0.05) than those derived from Y after the heat shock treatment for 6 h and 12 h, respectively. The level of cytochrome c of ear fibroblasts derived from H was higher (P<0.05) than those derived from Y after the heat shock treatment for 1–12 h, respectively. The abundances of Caspase-3, Caspase-8 and Caspase-9 of ear fibroblasts derived from H were higher (P<0.05) than those of cells derived from Y after 12 h and 24 h of heat shock, respectively; the Bcl-2/Bax ratios of ear fibroblasts derived from H were lower (P<0.05) than those from Y-derived fibroblasts after heated for 1–24 h. The expression level of HSP-70 of Y-derived ear fibroblasts was also higher (P<0.05) than that from H after the same duration of heat shock treatments. Taken together, the thermotolerance of ear fibroblasts derived from Taiwan yellow cattle was better than that of cells derived from Holstein cattle.  相似文献   

4.
Five sources of phytases were used to study their biochemical characteristics. Phytase E was from an original Escherichia coli (E. coli), phytase PI and PG from the transformed Pichia pastoris (P. pastoris) with phytase gene of E. coli, phytase B and R from Aspergillus niger (A. niger). The results showed that the relative phytase activities had no significant changes when temperature was below 60 °C (P>0.05), and then decreased significantly with temperature increasing (P<0.01). The fungal phytase with the phytase gene from A. niger had the higher thermostability than the bacterial phytase with the phytase gene from E. coli; i.e. at 70 °C, 27–58% of phytase activity (compared with 30 °C) was retained for the bacterial phytase, and 73–96% for the fungal phytase; at 90 °C, 20–47% was retained for the bacterial phytase, and 41–52% for the fungal phytase, especially for the most thermostable phytase R (P<0.01). The optimum pH ranges were 3.0–4.5 for the bacterial phytases and 5.0–5.5 for the fungal phytases (P<0.01). When pH levels were 1, 7 and 8, only 3–7% of phytase activity (compared with the maximum phytase activity at a pH point) was retained for both bacterial and fungal phytases. The amount of inorganic P released from soybean meal was significantly increased when the levels of phytase activity in the soybean meal increased from 0 to 1.0 U/g soybean meal (P<0.01), except for phytase PI. The maximum P released was obtained at 1 U/g soybean meal for all five kinds of phytases (P<0.01). The most economical phytase concentration for P released was 0.25 U/g for phytase PI and B, and 0.50–1.0 U/g for phytase PG, E and R. In addition, the linear and non-linear regression models were established to estimate phytase activity and its characteristics very easily and economically.  相似文献   

5.
Whole-body cryotherapy (WBC) and partial-body cryotherapy (PBC) are two methods of cold exposure (from −110 to −195 °C according to the manufacturers). However, temperature measurement in the cold chamber during a PBC exposure revealed temperatures ranging from −25 to −50 °C next to the skin of the subjects (using isolating layer placed between the sensor and the skin). This discrepancy is due to the human body heat transfer. Moreover, on the surface of the body, an air layer called the boundary layer is created during the exposure and limits heat transfer from the body to the cabin air. Incorporating forced convection in a chamber with a participant inside could reduce this boundary layer. The aim of this study was to explore the use of a new WBC technology based on forced convection (frontal unilateral wind) through the measurement of skin temperature. Fifteen individuals performed a 3-min WBC exposure at −40 °C with an average wind speed of 2.3 m s−1. The subjects wore a headband, a surgical mask, underwear, gloves and slippers. The skin temperature of the participants was measured with a thermal camera just before exposure, just after exposure and at 1, 3, 5, 10, 15 and 20 min after exposure. Mean skin temperature significantly dropped by 11 °C just after exposure (p<0.001) and then significantly increased during the 20-min post exposure period (p<0.001). No critically low skin temperature was observed at the end of the cold exposure. This decrease was greater than the mean decreases in all the cryosauna devices with reported exposures between −140 °C and −160 °C and those in two other WBC devices with reported exposures between −60 °C and −110 °C. The use of this new technology provides the ability to reach decreases in skin temperature similar to other technologies. The new chamber is suitable and relevant for use as a WBC device.  相似文献   

6.
The effect of temperature on the biology of Venturia canescens (Gravenhorst) (Hymenoptera: Ichneumonidae) is well understood under constant temperature conditions, but less so under more natural, fluctuating conditions. Herein we studied the influence of fluctuating temperatures on biological parameters of V. canescens. Parasitized fifth-instar larvae of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) were reared individually in incubators at six fluctuating temperature regimes (15–19.5 °C with a mean of 17.6 °C, 17.5–22.5 °C with a mean of 19.8 °C, 20–30 °C with a mean of 22.7 °C, 22.5–27.5 °C with a mean of 25 °C, 25.5-32.5 °C with a mean of 28.3 °C and 28.5–33 °C with a mean of 30 °C) until emergence and death of V. canescens adults. Developmental time from parasitism to adult eclosion, adult longevity and survival were recorded at each fluctuating temperature regime. In principle, developmental time decreased with an increase of the mean temperature of the fluctuating temperature regime. Upper and lower threshold temperatures for total development were estimated at 34.9 and 6.7 °C, respectively. Optimum temperature for development and thermal constant were 28.6 °C and 526.3 degree days, respectively. Adult longevity was also affected by fluctuating temperature, as it was significantly reduced at the highest mean temperature (7.0 days at 30 °C) compared to the lowest one (29.4 days at 17.6 °C). Survival was low at all tested fluctuating temperatures, apart from mean fluctuating temperature of 25 °C (37%). Understanding the thermal biology of V. canescens under more natural conditions is of critical importance in applied contexts. Thus, predictions of biological responses to fluctuating temperatures may be used in population forecasting models which potentially influence decision-making in IPM programs.  相似文献   

7.
《Small Ruminant Research》2008,74(1-3):103-108
Oxidative damage to sperm resulting from reactive oxygen species generated by the cellular components of semen during liquid storage is possibly one of the main causes for the decline in motility and fertility during storage—the other detrimental cause is low temperature on the destabilisation of sperm membrane structure. The aim of this study was to determine the effects of the addition of the anti-oxidants taurine and glutathione (GSH), and the membrane structure stabiliser, trehalose, on sperm viability during low temperature liquid storage. A total number of 36 ejaculates were collected using the artificial vagina from four Chios rams and nine replicates of the ejaculates were diluted with a Tris-based extender containing additives as the control. The sperm motility, percentage abnormal sperm, plasma membrane intact sperm and the hypo-osmotic swelling test (HOST) were determined during storage of semen at 5 °C for a period of 0, 6, 24 and 30 h of liquid storage, respectively. Trehalose at a level of 50 mM provided the best maintenance of motility at 6 and 30 h (P < 0.05), and gave the highest percentage (69.0 ± 2.0% and 64.6 ± 1.8%, respectively) of viable sperm at 24 and 30 h (P < 0.01). Trehalose treatment at a concentration of 50 mM also resulted in the highest percentage of membrane-intact sperm (53.7 ± 2.9%) after performing HOST at 30 h. The anti-oxidant treatments GSH 5–10 mM and taurine at 50 mM provided a significant improvement in sperm survival during the 6 h of liquid storage at 5 °C (P < 0.05). In conclusion, many aspects of sperm protection, e.g. sperm motility, viability and membrane stabilisation of the sperm cells during relative low temperature storage, are the key factors determining the preservation of sperm function. Future efforts toward improving function of ram sperm kept in low temperature storage should concentrate on anti-oxidant additives. The results of this study provide a new approach to the preservation of sperm from rams of the Chios and related breeds, and so contribute to the improvement of these breeds for the world sheep industry.  相似文献   

8.
Temperature is one of the most important abiotic factors affected by climate change. It determines physiological processes, ecological patterns and establishes the limits of geographic distribution of species. The induced thermal stress frequently results in physiological and behavioral responses and, in extreme cases, may lead to mortality episodes. Scrobicularia plana and Cerastoderma edule behavioral and mortality responses to temperature were evaluated. Specimens were sampled in the Mondego estuary (Portugal), acclimated and exposed to different temperature treatments (5–35 °C). Individual activity and mortality were registered during 120 h laboratory assays. Both species showed a thermal optimum for their activity (S. plana: 15–23 °C; C. edule: 20–23 °C), and survival was mainly affected by high temperature (S. plana: LC50120 h = 28.86 °C; C. edule: LC50120 h = 28.01 °C), with 100% mortality above critical values (≥32 °C). Results further indicated that both species are more affected the higher the temperature and the longer the exposure time. This study indicates that the occurrence of extreme climatic events, especially heat waves, may be particularly impairing for these species.  相似文献   

9.
《Small Ruminant Research》2007,67(1-3):121-128
Our objective was to determine the influence of short-term exposure to endophyte-infected tall fescue on reproductive function of ram lambs. Rams (214 days of age) were fed a diet free of endophyte-infected fescue seed (EF; n = 8) or endophyte-infected fescue seed (EI; n = 9; 34% of diet; 4.8 μg g−1 ergovaline) for 6 weeks. Feed offered to EF rams, individually fed, was reduced to the average intake of EI lambs from previous day so that intake was similar between treatments and averaged 2.4% BW (DM basis), leading to daily intake of 33.7 μg ergovaline kg−1 BW for the EI fed lambs. Daily high ambient temperature for the trial ranged between 16 and 26 °C. Respiration rate and rectal temperature were measured at 14:00 daily. Blood was collected for serum concentrations of prolactin (weekly) and testosterone (twice weekly). Body weight and body condition scores (BCS; 1 = thin; 5 = fat) were determined every 14 days. Scrotal circumference, scrotal skin temperature, and semen characteristics were determined weekly. Rams were slaughtered after 6 weeks of feeding. Signs of fescue toxicosis in EI fed rams included increased rectal temperature (P < 0.001, R2 = 0.11) and respiration rate (day, P < 0.001, R2 = 0.25) when high ambient temperature exceeded 22 °C and reduced serum concentrations of prolactin (diet × day, P < 0.001). Body weight of EI fed rams tended to decrease after 36 days of feeding compared with EF fed rams (−3.0 kg versus 0.51 kg; P < 0.07) and BCS was similar between treatment throughout the trial. Serum concentrations of testosterone were greater in EI compared with EF fed rams (diet × day, P < 0.005, R2 = 0.08). Scrotal skin temperature, scrotal circumference, semen volume, percent sperm motility, and percent abnormal sperm were similar between treatments. Spermatozoa concentration tended to be greater in EF compared with EI fed rams after 43 days of feeding (P < 0.10; R2 = 0.15). Rate of forward movement of spermatozoa tended to increase at a greater rate between Days 8 and 29 in EF compared with EI fed rams (diet × day, P < 0.08). Feeding endophyte-infected fescue seed to ram lambs was associated with potential decreased fertility and increased serum concentrations of testosterone. Short term exposure of endophyte toxins to male ruminants may negatively impact reproductive responses. Feeding for longer periods may further reduce fertility and merits further research.  相似文献   

10.
The present study aims to understand the influence of two thermal extremes (15 °C and 35 °C) as thermal stressors on the selected line of developmental variants (slow and fast developers) in Propylea dissecta and to compare it with the response at the optimal temperature (27 °C). The ratio of slow and fast developers within an egg batch differed with thermal extremes irrespective of F1 and F15 generations. Adult body mass got depressed after selection for control slow developers at 15 °C while it got enhanced for selected fast developers at 35 °C. More selected slow developers were found at low temperature and more selected fast developers at high temperature. Selection probably favours the enhancement of immature survival and emergence ratio which was found to be highest for selected fast developers at 35 °C and selected slow developers at 15 °C. Population level disparity on thermal confliction was observed in ladybird post selection over several generations. Therefore, we put forward that exposure thermal extremes over a long duration, causes an adaptive differentiation in thermal responses of slow and fast developers.  相似文献   

11.
Predicted global climate change has prompted numerous studies of thermal tolerances of marine species. The upper thermal tolerance is unknown for most marine species, but will determine their vulnerability to ocean warming. Gastropods in the family Turbinidae are widely harvested for human consumption. To investigate the responses of turbinid snails to future conditions we determined critical thermal maxima (CTMax) and preferred temperatures of Turbo militaris and Lunella undulata from the tropical-temperate overlap region of northern New South Wales, on the Australian east coast. CTMax were determined at two warming rates: 1 °C/30 min and 1 °C/12 h. The number of snails that lost attachment to the tank wall was recorded at each temperature increment. At the faster rate, T. militaris had a significantly higher CTMax (34.0 °C) than L. undulata (32.2 °C). At the slower rate the mean of both species was lower and there was no significant difference between them (29.4 °C for T. militaris and 29.6 °C for L. undulata). This is consistent with differences in thermal inertia possibly allowing animals to tolerate short periods at higher temperatures than is possible during longer exposure times, but other mechanisms are not discounted. The thermoregulatory behaviour of the turban snails was determined in a horizontal thermal gradient. Both species actively sought out particular temperatures along the gradient, suggesting that behavioural responses may be important in ameliorating short-term temperature changes. The preferred temperatures of both species were higher at night (24.0 °C and 26.0 °C) than during the day (22.0 °C and 23.9 °C). As the snails approached their preferred temperature, net hourly displacement decreased. Preferred temperatures were within the average seasonal seawater temperature range in this region. However, with future predicted water temperature trends, the species could experience increased periods of thermal stress, possibly exceeding CTMax and potentially leading to range contractions.  相似文献   

12.
The effects of rearing temperature on hepatic glucokinase (GK), glucose-6-phosphatase (G6Pase) and Glucose-6-phosphate dehydrogenase (G6PD) activity and gene expression were studied in GIFT (genetically improved farmed tilapia) tilapia fed a high carbohydrate diet containing 28% crude protein, 5% crude lipid and 40% wheat starch. Triplicate groups of fish (11.28 g initial body weight) were fed the diet for 45 days at 22 °C, 28 °C or 34 °C. At the end of the trial, final body weight of juvenile at 28 °C (59.12 g) was higher than that of the fish reared at 22 °C (27.13 g) and 34 °C (43.17 g). Feed intake, feed efficiency and protein efficiency ratio were also better at 28 °C. Liver glycogen levels were higher at 28 °C, while plasma glucose levels were higher in the 22 °C group. Significant (P<0.05) effects of water temperature on enzymes activities and gene expression were observed. Hepatic GK activity and mRNA level were higher at 28 °C than at 34 °C. Higher G6Pase and G6PD activity and gene expression were observed at 22 °C. Overall, the data show that juveniles reared at 28 °C exhibited enhanced liver glycolytic capacity. In contrast, hepatic gluconeogenesis and lipogenesis were increased by low temperature (22 °C).  相似文献   

13.
Boran (n=15) and Nguni (n=15) cows were used in a study to determine the effect of breed, age and coat colour on the concentration of heat shock protein 90 (HSP90AB1), physiological rectal and skin temperature, and markers of health. The cows were exposed to summer heat stress and Boran cows had higher significant (P<0.05) skin temperature (35.1±0.42 °C) as compared to the Nguni cows (36.0±0.38 °C). Nguni cows had higher body thermal gradients than the Boran cows. Boran cows had thicker skin (P<0.05) and longer hairs (24.3±2.26 mm) than their Nguni counterparts (20.2±2.00 mm). The HSP90AB1 concentration was increased in Boran cows, although breed had no significant (P>0.05) influence. Significantly (P<0.05) high urea and total cholesterol was recorded in Boran cows. Coat colour had a significant (P<0.05) effect on the weight and rectal temperature of the study animals. Coat colour and age had no significant effect (P>0.05) on the concentration of HSP90AB1, although older cows (≥9 years) had higher concentrations (5.4±1.29 ng/ml). Age had a significant (P<0.05) effect on packed cell volume, neutrophil/lymphocyte, urea, total protein and gamma-glutamyl transferase whereas cows with ≥9 years had more concentrations than young ones. Age significantly (P<0.05) influenced hair length, skin temperature and the thermal gradients. Breed was positively correlated (P<0.001) to coat colour, age, body condition score, weight and temperature humidity index while negatively correlated to urea and total cholesterol. It was concluded that Nguni cows were more adaptable to hot environments than the Boran cows as the latter were unable to balance thermal load between their bodies and the environment.  相似文献   

14.
Little is known about how the growth of individual Gambierdiscus species responds to environmental factors. This study examined the effects of temperature (15–34 °C), salinity (15–41) and irradiance (2–664 μmol photons m−2 s−1) on growth of Gambierdiscus: G. australes, G. belizeanus, G. caribaeus, G. carolinianus, G. carpenteri, G. pacificus and G. ruetzleri and one putative new species, Gambierdiscus ribotype 2. Depending on species, temperatures where maximum growth occurred varied between 26.5 and 31.1 °C. The upper and lower thermal limits for all species were between 31–34 °C and 15–21 °C, respectively. The shapes of the temperature vs. growth curves indicated that even small differences of 1–2 °C notably affected growth potentials. Salinities where maximum growth occurred varied between 24.7 and 35, while the lowest salinities supporting growth ranged from <14 to 20.9. These data indicated that Gambierdiscus species are more tolerant of lower salinities than is generally appreciated. Growth of all species began to decline markedly as salinities exceed 35.1–39.4. The highest salinity tested in this study (41), however, was lethal to only one species, Gambierdiscus ribotype 2. The combined salinity data indicated that differences in salinity regimes may affect relative species abundances and distributions, particularly when salinities are <20 and >35. All eight Gambierdiscus species were adapted to relatively low light conditions, exhibiting growth maxima at 50–230 μmol photons m−2 s−1 and requiring only 6–17 μmol photons m−2 s−1 to maintain growth. These low light requirements indicate that Gambierdiscus growth can occur up to 150 m depth in tropical waters, with optimal light regimes often extending to 75 m. The combined temperature, salinity and light requirements of Gambierdiscus can be used to define latitudinal ranges and species-specific habitats, as well as to inform predictive models.  相似文献   

15.
Heat stress (HS) adversely influences productivity and welfare of dairy cattle. We hypothesized that the thermoregulatory mechanisms vary depending on the exposure time to HS, with a cumulative effect on the adaptive responses and thermal strain of the cow. To identify the effect of HS on adaptive thermoregulatory mechanisms and predictors of caloric balance, Holstein cows were housed in climate chambers and randomly distributed into thermoneutral (TN; n=12) or HS (n=12) treatments for 16 days. Vaginal temperature (VT), rectal temperature (Tre), respiratory rate (RR), heart rate (HR), and dry matter intake (DMI) were measured. The temperature and humidity under TN were 25.9±0.2 °C and 73.0±0.8%, respectively, and under HS were 36.3±0.3 °C and 60.9±0.9%, respectively. The RR of the HS cows increased immediately after exposure to heat and was higher (76.02±1.70bpm, p<0.001) than in the TN (39.70±0.71bpm). An increase in Tre (39.87±0.07 °C in the HS vs. 38.56±0.03 °C in the TN, p<0.001) and in VT (39.82±0.10 °C in the HS vs. 38.26±0.03 °C in the TN, p<0.001) followed the increase in RR. A decrease (p<0.05) in HR occurred in the HS (62.13±0.99bpm) compared with the TN (66.23±0.79bpm); however, the magnitude of the differences was not the same over time. The DMI was lower in HS cows from the third day (8.27±0.33 kg d−1 in the HS vs. 14.03±0.29 kg d−1 in the TN, p<0.001), and the reduction of DMI was strongly affected (r=−0.65) by changes in the temperature humidity index. The effect of environmental variables from the previous day on physiological parameters and DMI was more important than the immediate effect, and ambient temperature represented the most determinant factor for heat exchange. The difference in the responses to acute and chronic exposure to HS suggests an adaptive response. Thus, intense thermal stress strongly influence thermoregulatory mechanisms and the acclimation process depend critically on heat exposure time.  相似文献   

16.
This study aimed to investigate temperature effect on physiological and biochemical responses of the marine medaka Oryzias melastigma larvae. The fish were subjected to a stepwise temperature change at a rate of 1 °C/h increasing or decreasing from 25 °C (the control) to six target temperatures (12, 13, 15, 20, 28 and 32 °C) respectively, followed by a 7-day thermal acclimation at each target temperature. The fish were fed ad libitum during the experiment. The results showed that cumulative mortalities were significantly increased at low temperatures (12 and 13 °C) and at the highest temperature (32 °C). For the survivors, their growth profile closely followed the left-skewed ‘thermal performance curve’. Routine oxygen consumption rates of fish larvae were significantly elevated at 32 °C but suppressed at 13 and 15 °C (due to a high mortality, larvae from 12 °C were not examined). Levels of heat shock proteins and activities of malate dehydrogenase and lactate dehydrogenase were also measured in fish larvae exposed at 15, 25 and 32 °C. The activities of both enzymes were significantly increased at both 15 and 32 °C, where the fish larvae probably suffered from thermal discomfort and increased anaerobic components so as to compensate the mismatch of energy demand and supply at these thermal extremes. Coincidently, heat shock proteins were also up-regulated at both 15 and 32 °C, enabling cellular protection. Moreover, the critical thermal maxima and minima of fish larvae increased significantly with increasing acclimation temperature, implying that the fish could develop some degrees of thermal tolerance through temperature acclimation.  相似文献   

17.
Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) is a worldwide emerging pest of soft fruits, but its cold tolerance has not been thoroughly explored. We determined the cold tolerance strategy, low temperature thermal limits, and plasticity of cold tolerance in both male and female adult D. suzukii. We reared flies under common conditions (long days, 21 °C; control) and induced plasticity by rapid cold-hardening (RCH, 1 h at 0 °C followed by 1 h recovery), cold acclimation (CA, 5 days at 6 °C) or acclimation under fluctuating temperatures (FA). D. suzukii had supercooling points (SCPs) between −16 and −23 °C, and were chill-susceptible. 80% of control flies were killed after 1 h at −7.2 °C (males) or −7.5 °C (females); CA and FA improved survival of this temperature in both sexes, but RCH did not. 80% of control flies were killed after 70 h (male) or 92 h (female) at 0 °C, and FA shifted this to 112 h (males) and 165 h (females). FA flies entered chill coma (CTmin) at approximately −1.7 °C, which was ca. 0.5 °C colder than control flies; RCH and CA increased the CTmin compared to controls. Control and RCH flies exposed to 0 °C for 8 h took 30–40 min to recover movement, but this was reduced to <10 min in CA and FA. Flies placed outside in a field cage in London, Ontario, were all killed by a transient cold snap in December. We conclude that adult phenotypic plasticity is not sufficient to allow D. suzukii to overwinter in temperate habitats, and suggest that flies could overwinter in association with built structures, or that there may be additional cold tolerance imparted by developmental plasticity.  相似文献   

18.
A viviparous lizard, Eremias multiocellata, was used to investigate the possible sexual and ontogenetic effects on selected body temperature, thermal tolerance range and the thermal dependence of locomotor performance. We show that adults are sexually dimorphic and males have larger bodies and heads than females. Adults selected higher body temperatures (34.5 vs. 32.4 °C) and could tolerate a broader range of body temperatures (8.1–46.8 vs. 9.1–43.1 °C) than juveniles. The sprint speed and maximum sprint distance increased with temperature from 21 °C to 33 °C, but decreased at 36 °C and 39 °C in both juveniles and adults. Adults ran faster and longer than juveniles at each tested temperature. Adult locomotor performance was not correlated with snout–vent length (SVL) or sex, and sprint speed was positively correlated with hindlimb length. Juvenile locomotor performance was positively correlated with both SVL and hindlimb length. The ontogenetic variation in selected body temperature, thermal tolerance and locomotor performance in E. multiocellata suggests that the effects of morphology on temperature selection and locomotor performance vary at different ontogenetic stages.  相似文献   

19.
《Cryobiology》2015,71(3):233-238
Survival of buck sperm is affected due to duration and temperature of stages of refrigerated or frozen storage. This study investigated interactive effect of cooling rates (moderate; MC and rapid cooling; RC); and equilibration times (0, 2, 4 and 8 h) on survival before freezing at 4 °C and post-thaw quality of buck sperm. Semen was collected (three Beetal bucks; replicates = 6), pooled and diluted with Tris-citrate extender. Pooled semen samples were subjected to either RC (−2.2 °C/min) or MC (−0.3 °C/min) from 37 °C to 4 °C in separate aliquots and further equilibrated at 4 °C for 8 h. Semen was frozen using standard procedure after completion of each equilibration period i.e. 0, 2, 4 and 8 h. Semen was evaluated for motility, viability, plasma membrane integrity (PMI) and normal apical ridge (NAR) before freezing and after thawing. The survival time (time for survival above threshold limit i.e. 60%) at 4 °C, of motility and PMI was observed 5 and 6 h respectively in RC group while >8 h in MC group. Rate of decline (slope) in motility and viability was higher (P < 0.05) in RC overtime during equilibration at 4 °C while PMI and NAR declined at equal rate in both cooling groups. Post-thaw motility and NAR were higher (P < 0.05) in MC when equilibrated for 2–8 h while viability and PMI of RC was observed equal to MC group. In conclusion, survival of buck sperm is higher when cooled with moderate rate. However, RC can maintain post-thaw sperm viability and PMI equal to MC when equilibrated for 2–8 h. The methods should be explored to maintain motility and NAR during rapid cooling of buck sperm.  相似文献   

20.
Development of immature Thrips palmi Karny was investigated at 12.5, 15, 17.5, 20, 22.5, 25, 27.5, 30, 32.5, and 35 °C, 20–40% RH and a photoperiod of 14:10 (L:D) h. Developmental time decreased with increasing temperature up to 32.5 °C in all stages. The total developmental time was longest at 12.5 °C (64.2 days) and shortest at 32.5 °C (9.2 days). The lower developmental threshold was 10.6, 10.6, 9.1, and 10.7 °C for egg, larva, prepupa, and pupa, respectively. The thermal constant required to complete the respective stage was 71.7, 59.2, 18.1, and 36.8DD. The lower threshold temperature and thermal constant were 10.6 °C and 183.3DD, respectively, for total immature development. The nonlinear relationship between developmental rate and temperature was well described by the modified Sharpe and DeMichele biophysical model (r2 = 0.905–0.998). The distribution of developmental completion of each stage was described by the 3-parameter Weibull function (r2 = 0.855–0.927). The temperature-dependent developmental models of T. palmi developed in this study could be used to predict its seasonal phenology in field and greenhouse vegetable crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号