首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
In addition to transmission involving extracellular free particles, a generally accepted model of virus propagation is one wherein virus replicates in one cell, producing infectious particles that transmit to the next cell via cell junctions or induced polarized contacts. This mechanism of spread is especially important in the presence of neutralizing antibody, and the concept underpins analysis of virus spread, plaque size, viral and host functions, and general mechanisms of virus propagation. Here, we demonstrate a novel process involved in cell-to-cell transmission of herpes simplex virus (HSV) in human skin cells that has not previously been appreciated. Using time-lapse microscopy of fluorescent viruses, we show that HSV infection induces the polarized migration of skin cells into the site of infection. In the presence of neutralizing antibody, uninfected skin cells migrate to the initial site of infection and spread over infected cells to become infected in a spatially confined cluster containing hundreds of cells. The cells in this cluster do not undergo cytocidal cell lysis but harbor abundant enveloped particles within cells and cell-free virus within interstitial regions below the cluster surface. Cells at the base and outside the cluster were generally negative for virus immediate-early expression. We further show, using spatially separated monolayer assays, that at least one component of this induced migration is the paracrine stimulation of a cytotactic response from infected cells to uninfected cells. The existence of this process changes our concept of virus transmission and the potential functions, virus, and host factors involved.  相似文献   

3.
Herpes simplex virus 1 (HSV-1) causes a chronic, lifelong infection in >60% of adults. Multiple recent vaccine trials have failed, with viral diversity likely contributing to these failures. To understand HSV-1 diversity better, we comprehensively compared 20 newly sequenced viral genomes from China, Japan, Kenya, and South Korea with six previously sequenced genomes from the United States, Europe, and Japan. In this diverse collection of passaged strains, we found that one-fifth of the newly sequenced members share a gene deletion and one-third exhibit homopolymeric frameshift mutations (HFMs). Individual strains exhibit genotypic and potential phenotypic variation via HFMs, deletions, short sequence repeats, and single-nucleotide polymorphisms, although the protein sequence identity between strains exceeds 90% on average. In the first genome-scale analysis of positive selection in HSV-1, we found signs of selection in specific proteins and residues, including the fusion protein glycoprotein H. We also confirmed previous results suggesting that recombination has occurred with high frequency throughout the HSV-1 genome. Despite this, the HSV-1 strains analyzed clustered by geographic origin during whole-genome distance analysis. These data shed light on likely routes of HSV-1 adaptation to changing environments and will aid in the selection of vaccine antigens that are invariant worldwide.  相似文献   

4.
5.
6.
The replication of herpes simplex virus (HSV) was compared in rabbit and hamster cells at optimal and supraoptimal temperatures. Replication occurred in cells of either species at 33 C, but the total infectious virus yield was routinely about 10-fold greater in rabbit cells than in hamster cells. At 39 C, this difference was exaggerated to greater than 100,000-fold. Whereas infectious virus was produced and plaques formed in rabbit kidney cell monolayers at the higher temperature, neither developed in those derived from hamster embryos. Elevating the temperature from 33 C to 39 C at various time intervals after exposure of the cultures to virus revealed that production of infectious virus in hamster cells was completely heat-sensitive up to 6 hr after infection. Specific viral antigens and viral deoxyribonucleic acid (DNA) were synthesized in both rabbit and hamster cell cultures. In addition, cellular DNA synthesis was depressed and cytopathic effects occurred in both cell systems. These cytopathic effects were not observed in cell cultures treated with HSV previously inactivated with ultraviolet light. Compared with parallel cultures at 33 C, the amount of viral DNA synthesized at 39 C was greatly reduced in both systems. In hamster cells, the reduction was twofold greater than in rabbit cells. This cell-dependent thermal inhibition of HSV replication in hamster cells did not occur with vaccinia virus.  相似文献   

7.
Herpesviruses can enter host cells using pH-dependent endocytosis pathways in a cell-specific manner. Envelope glycoprotein B (gB) is conserved among all herpesviruses and is a critical component of the complex that mediates membrane fusion and entry. Here we demonstrate that mildly acidic pH triggers specific conformational changes in herpes simplex virus (HSV) gB. The antigenic structure of gB was specifically altered by exposure to low pH both in vitro and during entry into host cells. The oligomeric conformation of gB was altered at a similar pH range. Exposure to acid pH appeared to convert virion gB into a lower-order oligomer. The detected conformational changes were reversible, similar to those in other class III fusion proteins. Exposure of purified, recombinant gB to mildly acidic pH resulted in similar changes in conformation and caused gB to become more hydrophobic, suggesting that low pH directly affects gB. We propose that intracellular low pH induces alterations in gB conformation that, together with additional triggers such as receptor binding, are essential for virion-cell fusion during herpesviral entry by endocytosis.Herpes simplex virus (HSV) is an important human pathogen, causing significant morbidity and mortality worldwide. HSV enters host cells by fusion of the viral envelope with either an endosomal membrane (38) or the plasma membrane (63). The entry pathway taken is thought to be determined by both virus (17, 45) and host cell (4, 17, 35, 39, 45) factors. Based on experiments with lysosomotropic agents, which elevate the normally low pH of endosomes, acidic pH has been implicated in the endocytic entry of HSV into several cell types, including human epithelial cells (37). Low pH has also recently been implicated in cell infection by several other human and veterinary herpesviruses (1, 21, 26, 47). The mechanistic role of endosomal pH in herpesvirus entry into cells is not known.Herpesviruses are a paradigm for membrane fusion mediated by a complex of several glycoproteins. We have proposed that HSV likely encodes machinery to mediate both pH-dependent and pH-independent membrane fusion reactions. Envelope glycoproteins glycoprotein B (gB) and gD and the heterodimer gH-gL are required for both pH-independent and pH-dependent entry pathways (11, 22, 30, 39, 46). Interaction of gD with one of its cognate receptors is an essential trigger for membrane fusion and entry (13, 52), regardless of the cellular pathway. However, engagement of a gD receptor is not sufficient for fusion, and at least one additional unknown trigger involving gB or gH-gL is likely necessary. gB is conserved among all herpesviruses, and in all cases studied to date, it plays roles in viral entry, including receptor binding and membrane fusion. The crystal structure of an ectodomain fragment of HSV type 1 (HSV-1) gB is an elongated, rod-like structure containing hydrophobic internal fusion loops (28). This structure bears striking architectural homology to the low pH, postfusion form of G glycoprotein from vesicular stomatitis virus (VSV-G) (43). Both the gB and G structures have features of class I and class II fusion proteins and are thus designated class III proteins (57).During entry of the majority of virus families, low pH acts directly on glycoproteins to induce membrane fusion (60). In some cases, the low pH trigger is not sufficient, or it plays an indirect role. For example, host cell proteases, such as cathepsins D and L, require intravesicular low pH to cleave Ebola virus and severe acute respiratory syndrome (SARS) glycoproteins to trigger fusion (14, 51).We investigated the role of low pH in the molecular mechanism of herpesviral entry. The results suggest that mildly acidic pH, similar to that found within endosomes, triggers a conformational change in gB. We propose that, together with other cellular cues such as receptor interaction, intracellular low pH can play a direct activating role in HSV membrane fusion and entry.  相似文献   

8.
9.
10.
11.
12.
13.
14.
Membrane fusion induced by enveloped viruses proceeds through the actions of viral fusion proteins. Once activated, viral fusion proteins undergo large protein conformational changes to execute membrane fusion. Fusion is thought to proceed through a “hemifusion” intermediate in which the outer membrane leaflets of target and viral membranes mix (lipid mixing) prior to fusion pore formation, enlargement, and completion of fusion. Herpes simplex virus type 1 (HSV-1) requires four glycoproteins—glycoprotein D (gD), glycoprotein B (gB), and a heterodimer of glycoprotein H and L (gH/gL)—to accomplish fusion. gD is primarily thought of as a receptor-binding protein and gB as a fusion protein. The role of gH/gL in fusion has remained enigmatic. Despite experimental evidence that gH/gL may be a fusion protein capable of inducing hemifusion in the absence of gB, the recently solved crystal structure of HSV-2 gH/gL has no structural homology to any known viral fusion protein. We found that in our hands, all HSV entry proteins—gD, gB, and gH/gL—were required to observe lipid mixing in both cell-cell- and virus-cell-based hemifusion assays. To verify that our hemifusion assay was capable of detecting hemifusion, we used glycosylphosphatidylinositol (GPI)-linked hemagglutinin (HA), a variant of the influenza virus fusion protein, HA, known to stall the fusion process before productive fusion pores are formed. Additionally, we found that a mutant carrying an insertion within the short gH cytoplasmic tail, 824L gH, is incapable of executing hemifusion despite normal cell surface expression. Collectively, our findings suggest that HSV gH/gL may not function as a fusion protein and that all HSV entry glycoproteins are required for both hemifusion and fusion. The previously described gH 824L mutation blocks gH/gL function prior to HSV-induced lipid mixing.Membrane fusion is an essential step during the entry process of enveloped viruses, such as herpes simplex virus (HSV), into target cells. The general pathway by which enveloped viruses fuse with target membranes through the action of fusion proteins is fairly well understood. Viral fusion proteins use the free energy liberated during their own protein conformational changes to draw the two membranes—viral and target—together. Fusion is thought to proceed through a “hemifusion” intermediate, in which the proximal leaflets of the two bilayers have merged but a viral pore has not yet formed and viral contents have not yet mixed with the cell cytoplasm (10, 38). Fusion proteins then drive the completion of fusion, which includes fusion pore formation, pore enlargement, and complete content mixing.HSV, an enveloped neurotropic virus, requires four glycoproteins—glycoprotein B (gB), glycoprotein D (gD), glycoprotein H (gH), and glycoprotein L (gL)—to execute fusion (9, 57, 60). gB, gD, and gH are membrane bound; gL is a soluble protein which complexes with gH to form a heterodimer (gH/gL). HSV-1 gH is not trafficked to the cell or virion surface in the absence of gL (32, 52). The requirement of four entry glycoproteins sets HSV apart from other enveloped viruses, most of which induce fusion through the activity of a single fusion protein. Although the specific mode of HSV entry is cell type dependent—fusion with neurons and Vero cells occurs at the plasma membrane at neutral pH; fusion with HeLa and CHO cells involves pH-dependent endocytosis, and fusion with C10 cells involves pH-independent endocytosis (42, 45)—all routes of entry require gD, gB, and gH/gL. Furthermore, although some discrepancies between virus-cell and cell-cell fusion have been observed (8, 44, 55, 58), both generally require the actions of gD, gB, and gH/gL.Much work has gone toward the understanding of how the required HSV entry glycoproteins work together to accomplish fusion, and many questions remain. After viral attachment, mediated by glycoprotein C and/or gB (54), the first step in HSV fusion is thought to be gD binding a host cell receptor (either herpesvirus entry mediator [HVEM], nectin-1, nectin-2, or heparan sulfate modified by specific 3-O-sulfotransferases) (56). The gD-receptor interaction induces a conformational change in gD (39) that is thought to trigger gD-gB and/or gD-gH/gL interactions that are required for the progression of fusion (1-4, 13, 18, 23, 49).gB and gH/gL are considered the core fusion machinery of most herpesviruses. The HSV-1 gB structure revealed surprising structural homology to the postfusion structures of two known viral fusion proteins (31, 35, 51). This structural homology indicates that despite not being sufficient for HSV fusion, gB is likely a fusion protein. Although the gB cytoplasmic tail (CT) is not included in the solved structure, it acts as a regulator of fusion, as CT truncations can cause either hyperfusion or fusion-null phenotypes (5, 17). The gB CT has been proposed to bind stably to lipid membranes and negatively regulate membrane fusion (12). Another proposed regulator of gB function is gH/gL. Despite conflicting accounts of whether gD and a gD receptor are required for the interaction of gH/gL and gB (1, 3, 4), a recent study indicates that gH/gL and gB interact prior to fusion and that gB may interact with target membranes prior to an interaction with gH/gL (2). The gB-gH/gL interaction seems to be required for the progression of fusion.Compared to the other required HSV entry glycoproteins, the role of gH/gL during fusion remains enigmatic. Mutational studies have revealed several regions of the gH ectodomain, transmembrane domain (TM), and CT that are required for its function (19, 25, 26, 30, 33). gH/gL of another herpesvirus, Epstein-Barr virus (EBV), have been shown to bind integrins during epithelial cell fusion, and soluble forms of HSV gH/gL have been shown to bind cells and inhibit viral entry in vitro (24, 46). However, the role of gH/gL binding to target cells in regard to the fusion process remains to be determined.There are some lines of evidence that suggest that gH/gL is a fusion protein. The gH/gL complexes of VZV and CMV have been reported to independently execute some level of cell-cell fusion (14, 37). HSV-1 gH/gL has been reported to independently mediate membrane fusion during nuclear egress (15). In silico analyses and studies of synthetic HSV gH peptides have proposed that gH has fusogenic properties (20, 21, 25-28). Finally, of most importance to the work we report here, gH/gL has been shown to be sufficient for induction of hemifusion in the presence of gD and a gD receptor, further promoting the premise that gH/gL is a fusion protein (59). However, the recently solved crystal structure of HSV-2 gH/gL revealed a tight complex of gH/gL in a “boot-like” structure, which bears no structural homology to any known fusion proteins (11). The HSV-2 gH/gL structure and research demonstrating that gH/gL and gB interactions are critical to fusion (2) have together prompted a new model of HSV fusion in which gH/gL is required to either negatively or positively regulate the activity of gB through direct binding.We wanted to investigate the ability of a previously reported gH CT mutant, 824L, to execute hemifusion. 824L gH contains a five-residue insertion at gH residue 824, just C-terminal of the TM domain. 824L is expressed on cell surfaces and incorporated into virions at levels indistinguishable from those of wild-type gH by either cell-based ELISA or immunoblotting, yet it is nonfunctional (33). We relied on a fusion assay capable of detecting hemifusion, developed by Subramanian et al. (59), which we modified to include an additional control for hemifusion or nonenlarging pore formation, glycosylphosphatidylinositol (GPI)-linked hemagglutinin (GPI-HA). GPI-HA is a variant of the influenza virus fusion protein, HA, that is known to stall the fusion process before enlarging fusion pores are formed.We were surprised to find that in our hands, gD, a gD receptor, and gH/gL were insufficient for the induction of hemifusion or lipid mixing in both cell-based and virus-based fusion assays. We found that gD, gB, and gH/gL are all required to observe lipid mixing. Further, we found that gB, gD, gL, and 824L gH are insufficient for lipid mixing. Our findings support the emerging view, based on gH/gL structure, that the gH/gL complex does not function as a fusion protein and does not insert into target membranes to initiate the process of fusion through a hemifusion intermediate. Our findings also further demonstrate that mutations in the CT of gH can have a dramatic effect on the ability of gH/gL to function in fusion.  相似文献   

15.
The herpes simplex virus 1 (HSV-1) strain McKrae is highly virulent compared to other wild-type strains of HSV-1. To help us better understand the genetic determinants that lead to differences in the pathogenicity of McKrae and other HSV-1 strains, we sequenced its genome. Comparing the sequence of McKrae's genome to that of strain 17 revealed that the genomes differ by at least 752 single nucleotide polymorphisms (SNPs) and 86 insertion/deletion events (indels). Although the majority of these polymorphisms reside in noncoding regions, 241 SNPs and 10 indels alter the protein-coding sequences of 58 open reading frames. Some of these variations are expected to contribute to the pathogenic phenotype of McKrae.  相似文献   

16.
《Autophagy》2013,9(1):24-29
The lysosomal pathway of autophagy is the major catabolic mechanism for degrading long-lived cellular proteins and cytoplasmic organelles. Recent studies have also shown that autophagy (xenophagy) may be used to degrade bacterial pathogens that invade intracellularly. However, it is not yet known whether xenophagy is a mechanism for degrading viruses. Previously, we showed that autophagy induction requires the antiviral eIF2alpha kinase signaling pathway (including PKR and eIF2alpha) and that this function ofeIF2alpha kinase signaling is antagonized by the herpes simplex virus (HSV-1) neurovirulence gene product, ICP34.5. Here, we show quantitative morphologic evidence of PKR-dependent xenophagic degradation of herpes simplex virions and biochemical evidence of PKR and eIF2alpha-dependent degradation of HSV-1 proteins, both of which are blocked by ICP34.5. Together, these findings indicate that xenophagy degrades HSV-1 and that this cellular function is antagonized by the HSV-1 neurovirulence gene product, ICP34.5. Thus, autophagy-related pathways are involved in degrading not only cellular constituents and intracellular bacteria, but also viruses.  相似文献   

17.
18.
19.
Herpes simplex virus was grown in a 6-liter suspended culture of an atypical permanent human lymphoid cell line, Roswell Park Memorial Institute no. 8226. The kinetics of virus replication were determined by counting viruses by electron microscopy, plaque formation, and tissue culture infectivity. Deoxyribonucleic acid-dependent deoxyribonucleic acid polymerase activity was determined during the course of infection. Electron microscopy studies substantiated the kinetics of the virus infection in lymphoid cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号