首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anchoring of microtubules (MTs) to subcellular structures is critical for cell shape, polarity, and motility. In mammalian cells, the centrosome is a prominent MT anchoring structure. A number of proteins, including ninein, p150Glued, and EB1, have been implicated in centrosomal MT anchoring, but the process is far from understood. Here we show that CAP350 and FOP (FGFR1 oncogene partner) form a centrosomal complex required for MT anchoring. We show that the C-terminal domain of CAP350 interacts directly with FOP and that both proteins localize to the centrosome throughout the cell cycle. FOP also binds to EB1 and is required for localizing EB1 to the centrosome. Depletion of either CAP350, FOP, or EB1 by siRNA causes loss of MT anchoring and profound disorganization of the MT network. These results have implications for the mechanisms underlying MT anchoring at the centrosome and they attribute a key MT anchoring function to two novel centrosomal proteins, CAP350 and FOP.  相似文献   

2.
EB1 is required for primary cilia assembly in fibroblasts   总被引:1,自引:0,他引:1  
EB1 is a small microtubule (MT)-binding protein that associates preferentially with MT plus ends and plays a role in regulating MT dynamics. EB1 also targets other MT-associated proteins to the plus end and thereby regulates interactions of MTs with the cell cortex, mitotic kinetochores, and different cellular organelles [1, 2]. EB1 also localizes to centrosomes and is required for centrosomal MT anchoring and organization of the MT network [3, 4]. We previously showed that EB1 localizes to the flagellar tip and proximal region of the basal body in Chlamydomonas[5], but the function of EB1 in the cilium/flagellum is unknown. We depleted EB1 from NIH3T3 fibroblasts by using siRNA and found that EB1 depletion causes a approximately 50% reduction in the efficiency of primary cilia assembly in serum-starved cells. Expression of dominant-negative EB1 also inhibited cilia formation, and expression of mutant dominant-negative EB1 constructs suggested that binding of EB1 to p150(Glued) is important for cilia assembly. Finally, expression of a C-terminal fragment of the centrosomal protein CAP350, which removes EB1 from the centrosome but not MT plus ends [6], also inhibited ciliogenesis. We conclude that localization of EB1 at the centriole/basal body is required for primary cilia assembly in fibroblasts.  相似文献   

3.
We report that microtubule (MT) nucleation at the Golgi apparatus requires AKAP450, a centrosomal γ‐TuRC‐interacting protein that also forms a distinct network associated with the Golgi. Depletion of AKAP450 abolished MT nucleation at the Golgi, whereas depletion of the cis‐Golgi protein GM130 led to the disorganisation of AKAP450 network and impairment of MT nucleation. Brefeldin‐A treatment induced relocalisation of AKAP450 to ER exit sites and concomitant redistribution of MT nucleation capacity to the ER. AKAP450 specifically binds the cis‐side of the Golgi in an MT‐independent, GM130‐dependent manner. Short AKAP450‐dependent growing MTs are covered by CLASP2. Like for centrosome, dynein/dynactin complexes are necessary to anchor MTs growing from the Golgi. We further show that Golgi‐associated AKAP450 has a role in cell migration rather than in cell polarisation of the centrosome–Golgi apparatus. We propose that the recruitment of AKAP450 on the Golgi membranes through GM130 allows centrosome‐associated nucleating activity to extend to the Golgi, to control the assembly of subsets of MTs ensuring specific functions within the Golgi or for transporting specific cargos to the cell periphery.  相似文献   

4.
The centrosome is the major microtubule organizing structure in somatic cells. Centrosomal microtubule nucleation depends on the protein gamma-tubulin. In mammals, gamma-tubulin associates with additional proteins into a large complex, the gamma-tubulin ring complex (gammaTuRC). We characterize NEDD1, a centrosomal protein that associates with gammaTuRCs. We show that the majority of gammaTuRCs assemble even after NEDD1 depletion but require NEDD1 for centrosomal targeting. In contrast, NEDD1 can target to the centrosome in the absence of gamma-tubulin. NEDD1-depleted cells show defects in centrosomal microtubule nucleation and form aberrant mitotic spindles with poorly separated poles. Similar spindle defects are obtained by overexpression of a fusion protein of GFP tagged to the carboxy-terminal half of NEDD1, which mediates binding to gammaTuRCs. Further, we show that depletion of NEDD1 inhibits centriole duplication, as does depletion of gamma-tubulin. Our data suggest that centriole duplication requires NEDD1-dependent recruitment of gamma-tubulin to the centrosome.  相似文献   

5.
The centrosome contains proteins that control the organization of the microtubule cytoskeleton in interphase and mitosis. Its protein composition is tightly regulated through selective and cell cycle–dependent recruitment, retention, and removal of components. However, the mechanisms underlying protein delivery to the centrosome are not completely understood. We describe a novel function for the polarity protein Par6α in protein transport to the centrosome. We detected Par6α at the centrosome and centriolar satellites where it interacted with the centriolar satellite protein PCM-1 and the dynactin subunit p150Glued. Depletion of Par6α caused the mislocalization of p150Glued and centrosomal components that are critical for microtubule anchoring at the centrosome. As a consequence, there were severe alterations in the organization of the microtubule cytoskeleton in the absence of Par6α and cell division was blocked. We propose a model in which Par6α controls centrosome organization through its association with the dynactin subunit p150Glued.  相似文献   

6.
The centrosomal protein, CDK5RAP2, is a microcephaly protein that regulates centrosomal maturation by recruitment of a γ-tubulin ring complex (γ-TuRC) onto centrosomes. In this report, we identified a novel human centrosomal protein, Cep169, as a binding partner of CDK5RAP2, a member of microtubule plus-end-tracking proteins (+TIPs). Cep169 interacts directly with CDK5RAP2 through CM1, an evolutionarily conserved domain, and colocalizes at the pericentriolar matrix (PCM) around centrioles with CDK5RAP2. In addition, Cep169 interacts with EB1 through SxIP-motif responsible for EB1 binding, and colocalizes with CDK5RAP2 at the microtubule plus-end. EB1-binding–deficient Cep169 abolishes EB1 interaction and microtubule plus-end attachment, indicating Cep169 as a novel member of +TIPs. We further show that ectopic expression of either Cep169 or CDK5RAP2 induces microtubule bundling and acetylation in U2OS cells, and depletion of Cep169 induces microtubule depolymerization in HeLa cells, although Cep169 is not required for assembly of γ-tubulin onto centrosome by CDK5RAP2. These results show that Cep169 targets microtubule tips and regulates stability of microtubules with CDK5RAP2.  相似文献   

7.
Outer dense fiber 2 (Odf2) was initially identified as a major component of sperm tail cytoskeleton and later was suggested to be a widespread component of centrosomal scaffold that preferentially associates with the appendages of the mother centrioles in somatic cells. Here we report the identification of two Odf2-related centrosomal components, hCenexin1 and hCenexin1 variant 1, that possess a unique C-terminal extension. Our results showed that hCenexin1 is the major isoform expressed in HeLa cells, whereas hOdf2 is not detectably expressed. Mammalian polo-like kinase 1 (Plk1) is critical for proper mitotic progression, and its association with the centrosome is important for microtubule nucleation and function. Interestingly, depletion of hCenexin1 by RNA interference (RNAi) delocalized Plk1 from the centrosomes and the C-terminal extension of hCenexin1 was crucial to recruit Plk1 to the centrosomes through a direct interaction with the polo-box domain of Plk1. Consistent with these findings, the hCenexin1 RNAi cells exhibited weakened gamma-tubulin localization and chromosome segregation defects. We propose that hCenexin1 is a critical centrosomal component whose C-terminal extension is required for proper recruitment of Plk1 and other components crucial for normal mitosis. Our results further suggest that the anti-Odf2 immunoreactive centrosomal antigen previously detected in non-germ line cells is likely hCenexin1.  相似文献   

8.
The amount of pericentriolar matrix at the centrosome is tightly linked to both microtubule nucleation and centriole duplication, although the exact mechanism by which pericentriolar matrix levels are regulated is unclear. Here we show that Centrobin, a centrosomal protein, is involved in regulating these levels. Interphase microtubule arrays in Centrobin-depleted cells are more focused around the centrosome and are less stable than the arrays in control cells. Centrobin-depleted cells initiate microtubule nucleation more rapidly than control cells and exhibit an increase in the number of growing microtubule ends emanating from the centrosome, while the parameters of microtubule plus end dynamics around the centrosome are not significantly altered. Finally, we show that Centrobin depletion results in the increased recruitment of pericentriolar matrix proteins to the centrosome, including γ-tubulin, AKAP450, Kendrin and PCM-1. We propose that Centrobin might regulate microtubule nucleation and organization by controlling the amount of pericentriolar matrix.  相似文献   

9.
Defects in centrosome and cilium function are associated with phenotypically related syndromes called ciliopathies. Centriolar satellites are centrosome-associated structures, defined by the protein PCM1, that are implicated in centrosomal protein trafficking. We identify Cep72 as a PCM1-interacting protein required for recruitment of the ciliopathy-associated protein Cep290 to centriolar satellites. Loss of centriolar satellites by depletion of PCM1 causes relocalization of Cep72 and Cep290 from satellites to the centrosome, suggesting that their association with centriolar satellites normally restricts their centrosomal localization. We identify interactions between PCM1, Cep72, and Cep290 and find that disruption of centriolar satellites by overexpression of Cep72 results in specific aggregation of these proteins and the BBSome component BBS4. During ciliogenesis, BBS4 relocalizes from centriolar satellites to the primary cilium. This relocalization occurs normally in the absence of centriolar satellites (PCM1 depletion) but is impaired by depletion of Cep290 or Cep72, resulting in defective ciliary recruitment of the BBSome subunit BBS8. We propose that Cep290 and Cep72 in centriolar satellites regulate the ciliary localization of BBS4, which in turn affects assembly and recruitment of the BBSome. Finally, we show that loss of centriolar satellites in zebrafish leads to phenotypes consistent with cilium dysfunction and analogous to those observed in human ciliopathies.  相似文献   

10.
Although termed central body, the centrosome is located off-center in many polarized cells. T cell receptor (TCR) engagement by antigens induces a polarity switch in T cells. This leads to the recruitment of the centrosome to the immunological synapse (IS), a specialized cell-cell junction. Despite much recent progress, how TCR signaling triggers centrosome repositioning remains poorly understood. In this paper, we uncover a critical requirement for the centrosomal casein kinase I delta (CKIδ) in centrosome translocation to the IS. CKIδ binds and phosphorylates the microtubule plus-end-binding protein EB1. Moreover, a putative EB1-binding motif at the C terminus of CKIδ is required for centrosome translocation to the IS. We find that depletion of CKIδ in T lymphocytes and inhibition of CKI in epithelial cells reduce microtubule growth. Therefore, we propose that CKIδ-EB1 complexes contribute to the increase in microtubule growth speeds observed in polarized T cells, a mechanism that might serve to generate long-stable microtubules necessary for centrosome translocation.  相似文献   

11.
Cytoplasmic dynein is known to be involved in the establishment of radial microtubule (MT) arrays. During mitosis, dynein activity is required for tethering of the MTs at the spindle poles. In interphase cells, dynein inhibitors induce loss of radial MT organization; however, the exact role of dynein in the maintenance of MT arrays is unclear. Here, we examined the effect of dynein inhibitors on MT distribution and the centrosome protein composition in cultured fibroblasts. We found that while these inhibitors induced rapid ( t 1/2 ∼ 20 min) loss of radial MT organization, the levels of key centrosomal proteins or the rates of MT nucleation did not change significantly in dynein-inhibited cells, suggesting that the loss of dynein activity does not affect the structural integrity of the centrosome or its capacity to nucleate MTs. Live observations of the centrosomal activity showed that dynein inhibition enhanced the detachment of MTs from the centrosome. We conclude that the primary role of dynein in the maintenance of a radial MT array in interphase cells consists of retention of MTs at the centrosome and hypothesize that dynein has a role in the MT retention, separate from the delivery to the centrosome of MT-anchoring proteins.  相似文献   

12.
In osteoclasts (OCs) podosomes are organized in a belt, a feature critical for bone resorption. Although microtubules (MTs) promote the formation and stability of the belt, the MT and/or podosome molecules that mediate the interaction of the two systems are not identified. Because the growing “plus” ends of MTs point toward the podosome belt, plus-end tracking proteins (+TIPs) might regulate podosome patterning. Among the +TIPs, EB1 increased as OCs matured and was enriched in the podosome belt, and EB1-positive MTs targeted podosomes. Suppression of MT dynamic instability, displacement of EB1 from MT ends, or EB1 depletion resulted in the loss of the podosome belt. We identified cortactin as an Src-dependent interacting partner of EB1. Cortactin-deficient OCs presented a defective MT targeting to, and patterning of, podosomes and reduced bone resorption. Suppression of MT dynamic instability or EB1 depletion increased cortactin phosphorylation, decreasing its acetylation and affecting its interaction with EB1. Thus, dynamic MTs and podosomes interact to control bone resorption.  相似文献   

13.
Centrosomes undergo dramatic changes in composition and activity during cell cycle progression. Yet mechanisms involved in recruiting centrosomal proteins are poorly understood. Nek2 is a cell cycle-regulated protein kinase required for regulation of centrosome structure at the G2/M transition. Here, we have addressed the processes involved in trafficking of Nek2 to the centrosome of human adult cells. We find that Nek2 exists in small, highly dynamic cytoplasmic particles that move to and from the centrosome. Many of these particles align along microtubules and a motif was identified in the Nek2 C-terminal noncatalytic domain that allows both microtubule binding and centrosome localization. FRAP experiments reveal that 70% of centrosomal Nek2 is rapidly turned over (t(1/2) approximately 3 s). Microtubules facilitate Nek2 trafficking to the centrosome but only over long distances. Cytoplasmic Nek2 particles colocalize in part with PCM-1 containing centriolar satellites and depletion of PCM-1 interferes with centrosomal recruitment of Nek2 and its substrate C-Nap1. Finally, we show that proteasomal degradation is necessary to allow rapid recruitment of new Nek2 molecules to the centrosome. Together, these data highlight multiple processes involved in regulating the abundance of Nek2 kinase at the centrosome including microtubule binding, the centriolar satellite component PCM-1, and localized protein degradation.  相似文献   

14.
EB1 is a microtubule tip-associated protein that interacts with the APC tumor suppressor protein and components of the dynein/dynactin complex. We have found that the C-terminal 50 and 84 amino acids (aa) of EB1 were sufficient to mediate the interactions with APC and dynactin, respectively. EB1 formed mutually exclusive complexes with APC and dynactin, and a direct interaction between EB1 and p150(Glued) was identified. EB1-GFP deletion mutants demonstrated a role for the N-terminus in mediating the EB1-microtubule interaction, whereas C-terminal regions contributed to both its microtubule tip localization and a centrosomal localization. Cells expressing the last 84 aa of EB1 fused to GFP (EB1-C84-GFP) displayed profound defects in microtubule organization and centrosomal anchoring. EB1-C84-GFP expression severely inhibited microtubule regrowth, focusing, and anchoring in transfected cells during recovery from nocodazole treatment. The recruitment of gamma-tubulin and p150(Glued) to centrosomes was also inhibited. None of these effects were seen in cells expressing the last 50 aa of EB1 fused to GFP. Furthermore, EB1-C84-GFP expression did not induce Golgi apparatus fragmentation. We propose that a functional interaction between EB1 and p150(Glued) is required for microtubule minus end anchoring at centrosomes during the assembly and maintenance of a radial microtubule array.  相似文献   

15.
In migrating cells, force production relies essentially on a polarized actomyosin system, whereas the spatial regulation of actomyosin contraction and substrate contact turnover involves a complex cooperation between the microtubule (MT) and the actin filament networks (Goode, B.L., D.G. Drubin, and G. Barnes. 2000. Curr. Opin. Cell Biol., 12:63-71). Targeting and capture of MT plus ends at the cell periphery has been described, but whether or not the minus ends of these MTs are anchored at the centrosome is not known. Here, we show that release of short MTs from the centrosome is frequent in migrating cells and that their transport toward the cell periphery is blocked when dynein activity is impaired. We further show that MT release, but not MT nucleation or polymerization dynamics, is abolished by overexpression of the centrosomal MT-anchoring protein ninein. In addition, a dramatic inhibition of cell migration was observed; but, contrary to cells treated by drugs inhibiting MT dynamics, polarized membrane ruffling activity was not affected in ninein overexpressing cells. We thus propose that the balance between MT minus-end capture and release from the centrosome is critical for efficient cell migration.  相似文献   

16.
The gamma-tubulin ring complex (gammaTuRC) is a large multi-protein complex that is required for microtubule nucleation from the centrosome. Here, we show that the GCP-WD protein (originally named NEDD1) is the orthologue of the Drosophila Dgrip71WD protein, and is a subunit of the human gammaTuRC. GCP-WD has the properties of an attachment factor for the gammaTuRC: depletion or inhibition of GCP-WD results in loss of the gammaTuRC from the centrosome, abolishing centrosomal microtubule nucleation, although the gammaTuRC is intact and able to bind to microtubules. GCP-WD depletion also blocks mitotic chromatin-mediated microtubule nucleation, resulting in failure of spindle assembly. Mitotic phosphorylation of GCP-WD is required for association of gamma-tubulin with the spindle, separately from association with the centrosome. Our results indicate that GCP-WD broadly mediates targeting of the gammaTuRC to sites of microtubule nucleation and to the mitotic spindle, which is essential for spindle formation.  相似文献   

17.
The microtubule (MT) cytoskeleton orchestrates the cellular plasticity and dynamics that underlie morphogenesis and cell division. Growing MT plus ends have emerged as dynamic regulatory machineries in which specialized proteins—called plus-end tracking proteins (+TIPs)—bind to and control the plus-end dynamics that are essential for cell division and migration. However, the molecular mechanisms underlying the plus-end regulation by +TIPs at spindle and astral MTs have remained elusive. Here, we show that TIP150 is a new +TIP that binds to end-binding protein 1 (EB1) in vitro and co-localizes with EB1 at the MT plus ends in vivo. Suppression of EB1 eliminates the plus-end localization of TIP150. Interestingly, TIP150 also binds to mitotic centromere-associated kinesin (MCAK), an MT depolymerase that localizes to the plus end of MTs. Suppression of TIP150 diminishes the plus-end localization of MCAK. Importantly, aurora B-mediated phosphorylation disrupts the TIP150–MCAK association in vitro. We reason that TIP150 facilitates the EB1-dependent loading of MCAK onto MT plus ends and orchestrates the dynamics at the plus end of MTs.  相似文献   

18.
The nucleation of microtubules requires protein complexes containing γ-tubulin, which are present in the cytoplasm and associate with the centrosome and with the mitotic spindle. We have previously shown that these interactions require the γ-tubulin targeting factor GCP-WD/NEDD1, which has an essential role in spindle formation. The recruitment of additional γ-tubulin to the centrosomes occurs during centrosome maturation at the G2/M transition and is regulated by the mitotic kinase Plk1. However, the molecular details of this important pathway are unknown and a Plk1 substrate that controls γ-tubulin recruitment has not been identified. Here we show that Plk1 associates with GCP-WD in mitosis and Plk1 activity contributes to phosphorylation of GCP-WD. Plk1 depletion or inhibition prevents accumulation of GCP-WD at mitotic centrosomes, but GCP-WD mutants that are defective in Plk1-binding and -phosphorylation still accumulate at mitotic centrosomes and recruit γ-tubulin. Moreover, Plk1 also controls the recruitment of other PCM proteins implicated in centrosomal γ-tubulin attachment (Cep192/hSPD2, pericentrin, Cep215/Cdk5Rap2). Our results support a model in which Plk1-dependent recruitment of γ-tubulin to mitotic centrosomes is regulated upstream of GCP-WD, involves multiple PCM proteins and therefore potentially multiple Plk1 substrates.  相似文献   

19.
Tight regulation of centrosome duplication is critical to ensure that centrosome number doubles once and only once per cell cycle. Superimposed onto this centrosome duplication cycle is a functional centrosome cycle in which they alternate between phases of quiescence and robust microtubule (MT) nucleation and MT-anchoring activities. In vertebrate cycling cells, interphase centrioles accumulate less pericentriolar material (PCM), reducing their MT nucleation capacity. In mitosis, centrosomes mature, accumulating more PCM to increase their nucleation and anchoring capacities to form robust MT asters. Interestingly, functional cycles of centrosomes can be altered to suit the cell's needs. Some interphase centrosomes function as a microtubule-organizing center by increasing their ability to anchor MTs to form centrosomal radial arrays. Other interphase centrosomes maintain their MT nucleation capacity but reduce/eliminate their MT-anchoring capacity. Recent work demonstrates that Drosophila cells take this to the extreme, whereby centrioles lose all detectable PCM during interphase, offering an explanation as to how centrosome-deficient flies develop to adulthood. Drosophila stem cells further modify the functional cycle by differentially regulating their two centrioles – a situation that seems important for stem cell asymmetric divisions, as misregulation of centrosome duplication in stem/progenitor cells can promote tumor formation. Here, we review recent findings that describe variations in the functional cycle of centrosomes.  相似文献   

20.
Liver kinase B1 (LKB1) is a tumor suppressor mutationally inactivated in Peutz–Jeghers syndrome (PJS) and various sporadic cancers. Although LKB1 encodes a kinase that possesses multiple functions, no individual hypothesis posed to date has convincingly explained how loss of LKB1 contributes to carcinogenesis. In this report we demonstrated that LKB1 maintains genomic stability through the regulation of centrosome duplication. We found that LKB1 colocalized with centrosomal proteins and was situated in the mitotic spindle pole. LKB1 deficiency-induced centrosome amplification was independent of AMP-activated protein kinase (AMPK), a well-defined substrate of LKB1. Cells lacking LKB1 exhibited an increase in phosphorylated and total Polo-like kinase 1 (PLK-1), NIMA-related kinase 2 (NEK2), and ninein-like protein (NLP). Overexpression of active PLK1 (T210D) reversed the inhibition of LKB1 on centrosome amplification. In contrast, depletion of PLK1 with siRNA or suppression of PLK1 kinase activity with BTO-1 (5-Cyano-7-nitro-2-benzothiazolecarboxamide-3-oxide) abrogated LKB1 deficiency-induced centrosome amplification. We further characterized that LKB1 phosphorylated and activated AMPK-related kinase 5 (NUAK1 or ARK5) that in turn increased the phosphorylation of MYPT1, enhanced the binding between MYPT1–PP1 and PLK1, and conferred an effective dephosphorylation of PLK1. More importantly, we noted that LKB1-deficient cells exhibited multiple nuclear abnormalities, such as mitotic delay, binuclear, polylobed, grape, large, and micronuclear. Immediate depletion of LKB1 resulted in the accumulation of multiploidy cells. Expression of LKB1 is reversely correlated with the levels of PLK1 in human cancer tissues. Thus, we have uncovered a novel function of LKB1 in the maintenance of genomic stability through the regulation of centrosome mediated by PLK1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号