首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Butanediols are widely used in the synthesis of polymers, specialty chemicals and important chemical intermediates. Optically pure R-form of 1,3-butanediol (1,3-BDO) is required for the synthesis of several industrial compounds and as a key intermediate of β-lactam antibiotic production. The (R)-1,3-BDO can only be produced by application of a biocatalytic process. Cupriavidus necator H16 is an established production host for biosynthesis of biodegradable polymer poly-3-hydroxybutryate (PHB) via acetyl-CoA intermediate. Therefore, the utilisation of acetyl-CoA or its upstream precursors offers a promising strategy for engineering biosynthesis of value-added products such as (R)-1,3-BDO in this bacterium. Notably, C. necator H16 is known for its natural capacity to fix carbon dioxide (CO2) using hydrogen as an electron donor. Here, we report engineering of this facultative lithoautotrophic bacterium for heterotrophic and autotrophic production of (R)-1,3-BDO. Implementation of (R)-3-hydroxybutyraldehyde-CoA- and pyruvate-dependent biosynthetic pathways in combination with abolishing PHB biosynthesis and reducing flux through the tricarboxylic acid cycle enabled to engineer strain, which produced 2.97 g/L of (R)-1,3-BDO and achieved production rate of nearly 0.4 Cmol Cmol−1 h−1 autotrophically. This is first report of (R)-1,3-BDO production from CO2.  相似文献   

2.
3.
Studies with the fruit-fly Drosophila melanogaster demonstrated that the enzyme sniffer prevented oxidative stress-induced neurodegeneration. Mutant flies overexpressing sniffer had significantly extended life spans in a 99.5% oxygen atmosphere compared to wild-type flies. However, the molecular mechanism of this protection remained unclear. Sequence analysis and database searches identified sniffer as a member of the short-chain dehydrogenase/reductase superfamily with a 27.4% identity to the human enzyme carbonyl reductase type I (CBR1). As CBR1 catalyzes the reduction of the lipid peroxidation products 4HNE and 4ONE, we tested whether sniffer is able to metabolize these lipid derived aldehydes by carbonyl reduction. To produce recombinant enzyme, the coding sequence of sniffer was amplified from a cDNA-library, cloned into a bacterial expression vector and the His-tagged protein was purified by Ni-chelate chromatography. We found that sniffer catalyzed the NADPH-dependent carbonyl reduction of 4ONE (K(m)=24±2 μM, k(cat)=500±10 min(-1), k(cat)/K(m)=350 s(-1) mM(-1)) but not that of 4HNE. The reaction product of 4ONE reduction by sniffer was mainly 4HNE as shown by HPLC- and GC/MS analysis. Since 4HNE, though still a potent electrophile, is less neurotoxic and protein reactive than 4ONE, one mechanism by which sniffer exerts its neuroprotective effects in Drosophila after oxidative stress may be enzymatic reduction of 4ONE.  相似文献   

4.
5.
We have developed the economical and convenient biocatalytic process for the preparation of (R)-1,3-butanediol (BDO) by stereo-specific microbial oxido-reduction on an industrial scale. (R)-1,3-BDO is an important chiral synthon for the synthesis of various optically active compounds such as azetidinone derivatives lead to penem and carbapenem antibiotics.

We studied on two approaches to obtain (R)-1,3-BDO. The first approach was based on enzyme-catalyzed asymmetric reduction of 4-hydroxy-2-butanone; the second approach was based on enantio-selective oxidation of the undesired (S)-1,3-BDO in the racemate. As a result of screening for yeasts, fungi and bacteria, the enzymatic resolution of racemic 1,3-BDO by the Candida parapsilosis IFO 1396, which showed differential rates of oxidation for two enantiomers, was found to be the most practical process to produce (R)-1,3-BDO with high enantiomeric excess and yield.

We characterized the (S)-1,3-BDO dehydrogenase purified from a cell-free extract of C. parapsilosis. This enzyme was found to be a novel secondary alcohol dehydrogenase (CpSADH). We have attempted to clone and characterize the gene encoding CpSADH and express it in Escherichia coli. The CpSADH activity of a recombinant E. coli strain was more than two times higher than that of C. parapsilosis. The production yield of (R)-1,3-BDO from the racemate increased by using the recombinant E. coli strain. Interestingly, we found that the recombinant E. coli strain catalyzed the reduction of ethyl 4-chloro-3-oxo-butanoate to ethyl (R)-4-chloro-3-hyroxy-butanoate with high enantiomeric excess.  相似文献   


6.
7.
8.
Mammalian carbonyl reductase (EC 1.1.1.184) is an enzyme that can catalyze the reduction of many carbonyl compounds, using NAD(P)H. We isolated a cDNA of carbonyl reductase (CHO-CR) from CHO-K1 cells which was 1208 bp long, including a poly(A) tail, and contained an 831-bp ORF. The deduced amino-acid sequence of 277 residues contained a typical motif for NADP+-binding (TGxxxGxG) and an SDR active site motif (S-Y-K). CHO-CR closely resembles mammalian carbonyl reductases with 71-73% identity. CHO-CR cDNA had the highest similarity to human CBR3 with 86% identity. Using the pET-28a expression vector, recombinant CHO-CR (rCHO-CR) was expressed in Escherichia coli BL21 (DE3) cells and purified with a Ni2+-affinity resin to homogeneity with a 35% yield. rCHO-CR had broad substrate specificity towards xenobiotic carbonyl compounds. RT-PCR of Chinese hamster tissues suggest that CHO-CR is highly expressed in kidney, testis, brain, heart, liver, uterus and ovary. Southern blotting analysis indicated the complexity of the Chinese hamster carbonyl reductase gene.  相似文献   

9.
Doyle MP  Hu W 《Chirality》2002,14(2-3):169-172
A highly enantioselective methodology for the synthesis of the GABA(B) receptor agonist (R)-(-)-baclofen is described. This synthesis begins with p-chlorophenethyl alcohol and involves a catalytic carbon-hydrogen insertion reaction of a chiral dirhodium(II) carboxamidate with the corresponding diazoacetate (81% yield, 95% ee). Subsequent steps convert the intermediate gamma-lactone to (R)- (-)-baclofen in a 60% overall yield. The amount of catalyst required for the C-H insertion transformation is only 0.5 mol%.  相似文献   

10.
11.
12.
Conversion of xylose to (R,R)-2,3-butanediol by Paenibacillus polymyxa in anaerobic batch and continuous cultures was increased by 39% and 52%, respectively, by increasing the growth temperatures from 30 to 39 °C. There was no effect of temperature when glucose was used as substrate. 39 mM (R,R)-2,3-butanediol, 65 mM ethanol, and 47 mM acetate were obtained from 100 mM xylose after 24 h batch culture at 39 °C. With 100 mM glucose and 100 mM xylose used together in a batch culture at 39 °C, all xylose was consumed after 24 h and 82 mM (R,R)-2,3-butanediol, 124 mM ethanol and 33 mM acetate were produced.  相似文献   

13.
An NADPH-dependent carbonyl reductase (PsCR) gene from Pichia stipitis was cloned. It contains an open reading frame of 849 bp encoding 283 amino acids whose sequence had less than 60% identity to known reductases that produce ethyl (S)-4-chloro-3-hydroxybutanoates (S-CHBE). When expressed in Escherichia coli, the recombinant PsCR exhibited an activity of 27 U/mg using ethyl 4-chloro-3-oxobutanoate (COBE) as a substrate. Reduction of COBE to (S)-CHBE by transformants in an aqueous mono-phase system for 18 h, gave a molar yield of 94% and an optical purity of the (S)-isomer of more than 99% enantiomeric excess.  相似文献   

14.
Paenibacillus polymyxa can produce the (R,R)-stereoisomer of 2,3-butanediol (2,3-BDL) which is industrially very useful. Two important factors affecting (R,R)-BDL production by P. polymyxa ATCC 12321, medium composition, and addition of acetic acid to the culture were investigated in this study with accompanying comparative proteomic analysis. For this purpose, a simple control strategy of O2 supply was applied on the basis of an optimized basal medium: after a short period of batch cultivation with relatively high O2 supply, the culture is switched into strong O2 limitation, thereby promoting BDL formation. Three parallel fed-batch cultures starting from the same batch culture in an early stationary phase were then comparatively studied: the first one was running as control with the only change of O2 supply; the second was, in addition, supplemented with 0.5 g/L yeast extract; and the third one was further added with 6 g/L acetate. Proteomic analyses of the three fed-batch cultures identified more than 86 proteins involved primarily in the central carbon metabolism, amino acid biosynthesis, energy metabolism, and stress responses. The examination of expression patterns of selected proteins, especially combined with fermentation data, gave valuable insights into the metabolic regulation of P. polymyxa under the different given conditions. Based on the proteomic analysis and further medium optimization studies, methionine was identified as one major growth-limiting factor in the basal medium and explains well the effect of yeast extract. Acetic acid was found to trigger the so far less studied acetone biosynthesis pathway in this organism. The latter is suggested in turn to enhance the switch from acidogenesis to solventogenesis. Thus, these findings extended our knowledge about BDL formation in P. polymyxa and provided useful information for further strain and process optimization.  相似文献   

15.
Chinese hamster monomeric carbonyl reductases (CHCRs) belong to the short-chain dehydrogenase/reductase (SDR) superfamily, which is a family of enzymes that metabolize many endogenous and xenobiotic compounds. We previously cloned three carbonyl reductase cDNAs-Chcr1, Chcr2, and Chcr3. By performing spectrophotometric analyses, we indicated that the enzymes CHCR1, CHCR2, and CHCR3 had similar specificities toward steroids; only CHCR3 did not show any reactivity with prostaglandins (PGs). In the present study, we investigated the characteristics of CHCRs in detail, that is, the differences in their expression patterns, physicochemical properties, and enzymatic activities. CHCR1 exhibited sex-dependent expression patterns. CHCRs showed multiple surface potentials in the zeta potential analysis and CHCR3 exhibited an isatin reductase activity with a high K(m) value. By the present HPLC-analysis, all the three enzymes exhibited PGF(2alpha) dehydrogenase activity and could oxidize PGF(2alpha) to PGE(2) and 15-keto-PGF(2alpha), i.e., the three enzymes exhibited 9- and 15-hydroxy PG dehydrogenase activities. Moreover, 15-keto-PGE(2) was detected in a comparatively higher amount in the dehydrogenase reaction products of CHCR2 than in those of CHCR1 and CHCR3, suggesting that CHCR2 can oxidize PGE(2) and/or 15-keto-PGF(2alpha) to 15-keto-PGE(2); however, these two PGs did not seem to be efficient substrates of CHCR1. Despite the differences in the dehydrogenase activities between CHCR1 and CHCR2, PGE(2) reductase activities of the two enzymes were similar, and PGF(2alpha) was predominantly produced from PGE(2) as a result of the PG 9-keto reductase activity. On the other hand, CHCR3 exhibited a reduced PGE(2) reductase activity. In conclusion, although the CHCRs share a high degree of sequence identity (>70%), they clearly differed in their enzymatic characteristics.  相似文献   

16.
Two optically active phosphoramidite monomers for modified oligodeoxyribonucleotides were prepared. These monomers were then introduced into dodecanucleotides in the middle of the sequences. The modified dodecanucleotides were characterized by various analytical methods including MALDI-TOF mass spectrometry and Tm values were obtained to appraise the binding affinity, by measuring change in UV absorbance at 260 nm.  相似文献   

17.
This work describes the production of (R,R)-2,3-butanediol in Escherichia coli using glycerol by metabolic engineering approaches. The introduction of a synthetic pathway converting pyruvate to (R,R)-2,3-butanediol into wild-type E. coli strain BW25113 led to the production of (R,R)-2,3-butanediol at a titer of 3.54?g/l and a yield of 0.131?g product/g glycerol (26.7?% of theoretical maximum) with acetate (around 3.00?g/l) as the dominant by-product. We therefore evaluated the impacts of deleting the genes ackA or/and poxB that are responsible for the major by-product, acetate. This increased production of (R,R)-2,3-butanediol to 9.54?g/l with a yield of 0.333?g product/g glycerol (68.0?% of theoretical maximum) in shake flask studies. The utilization of low-priced crude glycerol to produce value-added chemicals is of great significance to the economic viability of the biodiesel industry.  相似文献   

18.
The aim of this work was to study the influence of media components and physico-chemical parameters on the growth and carbonyl reductase production by Geotrichum candidum. Under optimized conditions, the conversion of the substrate increased to >93%, while the specific growth rate and enzyme activity were increased by 200% and 29%, respectively. The rate of conversion of the substrate was also very high in the cells grown in optimized medium. The volumetric productivity of the biotransformation process was much higher (0.27g/lh) with the cells grown in the optimized medium compared to that of grown in un-optimized medium (0.16g/lh). The cells were also highly stable in the operational condition, indicating the feasibility of their use in multiple batches of reaction.  相似文献   

19.
Chiral alcohols are valuable as diverse chemicals and synthetic intermediate materials. Phenylacetaldehyde reductase (PAR) is an enzyme that converts a wide variety of ketones into chiral alcohols with high optical purity. When an alcohol such as 2-propanol is used as a hydrogen donor, PAR itself will also mediate the regeneration of the coenzyme NADH in situ. Perceiving a capacity for improvement, we sought to develop a PAR that is able to convert higher concentrations of substrates in the presence of high concentrations of 2-propanol. The selection procedure for mutants was re-examined and a procedure able to select an effective amino acid substitution was established. Two advantageous amino acid substitutions were successfully selected using the procedure. When high-concentration substrate conversion reaction was subjected with a mutant that integrated both the two amino acid substitutions, near-complete conversions of m-chlorophenacyl chloride (m-CPC) (2.1 mmol/ml) and ethyl 4-chloro-3-oxobutanoate (ECOB) (1.9 mmol/ml) were achieved.  相似文献   

20.
AIMS: To purify and characterize the (R)-specific carbonyl reductase from Candida parapsilosis; to compare the enzyme with other stereospecific oxidoreductases; and to develop an available procedure producing optically active (R)-1-phenyl-1,2-ethanediol (PED). METHODS AND RESULTS: An (R)-specific carbonyl reductase was found and purified from C. parapsilosis through four steps, including blue-sepharose affinity chromatography. The relative molecular mass of the enzyme was estimated to be 35 kDa on gel-filtration chromatography and 37.5 kDa on Sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme catalysed the reduction of various ketones, including alkyl and aromatic ketones, and was specific to short-chain and medium-chain alkyl ketones. The enzyme activity was inhibited by divalent ion of CuSO(4) and FeSO(4), whereas zincum ion stimulated its activity. For catalysing reduction, the enzyme performed maximum activity at pH 6.0 and the optimum temperature was 45 degrees C. The carbonyl reductase catalysed asymmetric reduction of beta-hydroxyacetophenone to the corresponding (R)-PED with the optical purity of 100% enantiomeric excess (e.e.). By analysing its partial amino acid sequences, the enzyme was proposed to be a novel stereospecific carbonyl reductase. CONCLUSIONS: The purified carbonyl reductase showed unusual stereospecificity and catalysed the NADH-dependent reduction of beta-hydroxyacetophenone to (R)-PED. The enzyme was different from other stereoselective oxidoreductases in catalytic properties. SIGNIFICANCE AND IMPACT OF THE STUDY: The discovery of (R)-specific oxidoreductase exhibiting unusual stereospecificity towards hydroxyl ketone is valuable for the synthesis of both enantiomers of useful chiral alcohols, and provides research basis for the achievement of profound knowledge on the relationship between structure and catalytic function of (R)-specific enzymes, which is meaningful for the alteration of stereospecificity by molecular methods to obtain the enzymes with desired stereospecificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号